Question Set 9

CS 320

Chapter 11

1. Compute z_{c} and w_{c}.

$$
\left[\begin{array}{c}
x_{n} w_{n} \\
y_{n} w_{n} \\
z_{n} w_{n} \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & -c_{x} & 0 \\
0 & s_{y} & -c_{y} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{e} \\
y_{e} \\
z_{e} \\
1
\end{array}\right]
$$

2. Consider the two points $[0,0,-1,1]^{t}$ and $[0,0,-2,1]^{t}$. Each point is in eye coordinates. Compute z_{n} for each point. Should the graphics pipeline use $<$ or $>$ to determine which point is closer to the camera?
3. Are distances preserved by a projective transformation? Explain.
4. Show that the coordinates of the point at the left, bottom, far vertex of a frustum are $\left[\frac{f l}{n}, \frac{f b}{n}, f, 1\right]^{t}$. Then, "show" that

$$
\left[\begin{array}{cccc}
-\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & -\frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

maps its frustum into the canonical cube by computing the normalized device coordinates of the eye coordinate points $\left[\frac{f l}{n}, \frac{f b}{n}, f, 1\right]^{t}$ and $[r, t, n, 1]^{t}$.
5. With depth buffering, does the order in which vertices are processed matter?
6. For a given piece of geometry, will every vertex processed have the same w_{n} value?
7. As seen in the following figure and explained in the textbook, the straightforward method of interpolating the z_{e} over the interior of two pieces of geometry with overlapping z_{e} values produces incorrect occlusion:

Suppose that we have two triangles such that the closest-in-z vertex of triangle is farther than the farthest-in-z vertex of the other triangle. If we linearly interpolate the z_{e} value over the interior of the triangles, would z-buffering produce an image with the correct occlusion?
8. Starting with the projection matrix P of problem 4, suppose we replace P with $P Q$ where

$$
Q=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

What will be the effect in the resulting image?

