Question Set 9

$\mathrm{CS}~320$

Chapter 11

1. Compute z_c and w_c .

$\begin{bmatrix} x_n w_n \end{bmatrix}$		x_c	=	s_x	0	$-c_x$	0]	$\begin{bmatrix} x_e \end{bmatrix}$
$y_n w_n$		y_c		0	s_y	$-c_y$	0	y_e
$z_n w_n$		z_c		0	0	0	1	z_e
w_n		w_c		0	0	-1	0	$\begin{bmatrix} 1 \end{bmatrix}$

- 2. Consider the two points $[0, 0, -1, 1]^t$ and $[0, 0, -2, 1]^t$. Each point is in eye coordinates. Compute z_n for each point. Should the graphics pipeline use < or > to determine which point is closer to the camera?
- 3. Are distances preserved by a projective transformation? Explain.
- 4. Show that the coordinates of the point at the left, bottom, far vertex of a frustum are $\left[\frac{fl}{n}, \frac{fb}{n}, f, 1\right]^t$. Then, "show" that

$$\left[\begin{array}{cccc} -\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & -\frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{array}\right]$$

maps its frustum into the canonical cube by computing the normalized device coordinates of the eye coordinate points $\left[\frac{fl}{n}, \frac{fb}{n}, f, 1\right]^t$ and $[r, t, n, 1]^t$.

- 5. With depth buffering, does the order in which vertices are processed matter?
- 6. For a given piece of geometry, will every vertex processed have the same w_n value?

7. As seen in the following figure and explained in the textbook, the straightforward method of interpolating the z_e over the interior of two pieces of geometry with overlapping z_e values produces incorrect occlusion:

Suppose that we have two triangles such that the closest-in-z vertex of triangle is farther than the farthest-in-z vertex of the other triangle. If we linearly interpolate the z_e value over the interior of the triangles, would z-buffering produce an image with the correct occlusion?

8. Starting with the projection matrix P of problem 4, suppose we replace P with PQ where

$$Q = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

What will be the effect in the resulting image?