Question Set 7

$\mathrm{CS}~320$

Chapter 8

1. Consider the following figure:

The vectors $\vec{v_1}$ and $\vec{v_2}$ extend from the center of the arcball to points on the surface of the sphere represented by the arcball. Let the points be $\tilde{p_1}$ and $\tilde{p_2}$ respectively. Let the center of the arcball be \tilde{c} . Starting from these three points, write pseudo-code to construct:

- (a) \vec{k} . Also, what does \vec{k} represent?
- (b) The angle ϕ .
- (c) The quaternion representing the rotation from $\vec{v_1}$ to $\vec{v_2}$.
- 2. Referring to the previous figure, the arcball interface uses the quaternion $[\cos \phi, \sin \phi \, \hat{\mathbf{k}}]^t$ to represent the rotation from $\vec{v_1}$ to $\vec{v_2}$. This causes the rotated object to rotate twice as far as expected. Why?
- 3. For the arcball interface, given two raw mouse click points [x₁, y₁]^t and [x₂, y₂]^t, write pseudo-code to convert them to the vectors v₁ and v₂. Assume that you have the arcball's RigTform. You will need to use the getScreenSpaceCoord() function described in the Implementing an Arcball Interface reading.
- 4. Given the vectors $\vec{v_1}$ and $\vec{v_2}$, write pseudo-code to construct the RigTform corresponding to the rotation between them.