Question Set 6

CS 320

Chapter 6

1. The linear interpolation (LERP) of two rotation matrices,

$$
R_{\alpha}:=\left(R_{1} R_{0}^{-1}\right)^{\alpha} R_{0}
$$

when applied to a frame, causes the frame's basis vectors to move along a straight line. This implies that points associated with the frame move along a straight line as well. Consider LERPing two rotation matrices to rotate this square by 90° :

In a single hand-drawn figure, show the result of the LERP operation on this square for $\alpha=0$ and $\alpha=0.5$. Explain why this is not rotation.
2. Define axis/angle rotation and explain how a quaternion encodes this rotation mechanism.
3. Show how to construct a quaternion representing a rotation of θ about $\hat{\mathbf{k}}$. Do not assume that $\hat{\mathbf{k}}$ is of unit length.
4. What is the multiplicative inverse of the quaternion you constructed in the previous question? Give a geometric reason as to why this is the multiplicative inverse.
5. Assuming that $\hat{\mathbf{k}}$ is of unit length, show that any quaternion constructed from it is also of unit length.
6. Does the coordinate four-vector $[\hat{\mathbf{c}}, 1]^{t}$ represent a point or a vector?
7. Write the rotation by $\frac{2 \pi}{3}$ about $[3,1,5]$ as a unit norm quaternion. Show work.
8. Extract the angle and axis from the quaternion [0.8660, 0, 0.2236, 0.4472]. Assume that the angle is measured in radians. Show work.

