Question Set 5

 $\mathrm{CS}~320$

Chapter 5

1. Define:

- (a) Object frame
- (b) World frame
- (c) Eye frame
- (d) Object coordinates
- (e) World coordinates
- (f) Eye coordinates
- 2. The world frame corresponds neither to any drawn geometry nor to the eye. Yet, it is essential. Why?
- 3. How do object coordinates differ from eye coordinates?
- 4. Given

$$\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$$

 $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$

If $\tilde{p} = \vec{o}^t c$

- (a) What are \tilde{p} 's world coordinates?
- (b) What are \tilde{p} 's eye coordinates?
- 5. How do we move an object?
- 6. In a right-handed coordinate system, imagine a cube 6 ft. in front of your eyes. $\vec{\mathbf{e}}^t$'s origin is between your eyes, with its *x*-axis to the right and its *y*-axis up. $\vec{\mathbf{o}}^t$'s origin is the center of the cube, with its *x*-axis pointing at $\vec{\mathbf{e}}^t$'s origin and its *y*-axis to the left.
 - (a) For each frame, describe the z-axis.
 - (b) The cube is translated 6 units along the x-axis with respect to $\vec{\mathbf{o}}^t$. Describe its new position.
 - (c) From its original position, the cube is rotated $\pi/2$ radians about the *y*-axis with respect to $\vec{\mathbf{e}}^t$. Describe its new position.
- 7. Watch the *Respect the Frame* video, available from the course web site. What frame is used in Version 1, resulting in incorrect behavior? What frame is used in Version 2, resulting in correct behavior?

- 8. Show how to apply a transformation M to $\vec{\mathbf{o}}^t$ with respect to $\vec{\mathbf{a}}^t$.
- 9. Explain how $\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t(O)_T(E)_R$ gives us an auxiliary basis that has $\vec{\mathbf{o}}^t$'s origin and $\vec{\mathbf{e}}^t$'s orientation. How do we construct $(O)_T$ and $(E)_R$?
- 10. Given $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$ with E such that the eye is located at [0, 0, 5], pointed at [0, 0, 0] (the origin of $\vec{\mathbf{w}}^t$), with an up vector of [0, 1, 0]. Let R be a rotation transformation of $\pi/2$ radians about the y-axis. Let $\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t A$ where $A = (W)_T(E)_R$. (W = I; I is the identity matrix.)

Describe the effect of performing the updates

- (a) $E \leftarrow ER$ (corresponding to the transformation $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E \Rightarrow \vec{\mathbf{w}}^t ER$)
- (b) $E \leftarrow ARA^{-1}E$ (corresponding to the transformation $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E \Rightarrow \vec{\mathbf{w}}^t ARA^{-1}E$)
- 11. Consider this robot:

where

- (a) $\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$ (torso frame)
- (b) $\vec{\mathbf{a}}^t = \vec{\mathbf{o}}^t A$ (right shoulder joint frame)
- (c) $\vec{\mathbf{b}}^t = \vec{\mathbf{a}}^t B$ (right upper-arm frame)
- (d) $\vec{\mathbf{c}}^t = \vec{\mathbf{a}}^t C$ (right elbow joint frame)

What is the advantage of expressing $\vec{\mathbf{a}}^t$ with respect to $\vec{\mathbf{o}}^t$, rather than respect to $\vec{\mathbf{w}}^t$?

- 12. Suppose that we have a scene with a jet airplane flying in the sky. Suppose that the jet's geometry is described with respect to the jet's own frame, $\mathbf{j}^t = \mathbf{w}^t J$. Let this frame have its origin in the cockpit with the negative z-axis pointing out the front window. Suppose we wish to render the scene from the point of view of the pilot. Given a point on some other object, $\tilde{p} = \mathbf{\vec{o}}^t \mathbf{c}$, what coordinate vector should we pass to the renderer to draw this point?
- 13. Consider the robot of question 11. Suppose that we want to rotate the right shoulder joint with respect to a frame whose origin is at the center of the joint but has axes that align with those of the eye. How would this be implemented?