## Question Set 4

## $\mathrm{CS}~320$

## Chapter 4

1. Let

$$S = \begin{bmatrix} 0.5 & 0 & 0 & 0\\ 0 & 0.5 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

What transformation is accomplished by this matrix?

2. Consider S from the previous problem.



- (a) Describe  $\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} \Rightarrow \vec{\mathbf{f}}^t S \mathbf{c}$  and draw the transformed point.
- (b) Describe  $\tilde{p} = \vec{\mathbf{a}}^t \mathbf{c} \Rightarrow \vec{\mathbf{a}}^t S \mathbf{c}$  and draw the transformed point.
- 3. Let  $\tilde{q} = \vec{\mathbf{f}}^t \mathbf{c}$  and  $\vec{\mathbf{a}}^t = \vec{\mathbf{f}}^t A$ . What are  $\tilde{q}$ 's coordinates with respect to  $\vec{\mathbf{a}}^t$ ?
- 4. State the "left of" rule and illustrate it with an example.
- 5. Using the definitions of Section 4.2, draw two different sketches illustrating the transformation  $\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t RT$ .
- 6. Suppose  $\vec{\mathbf{f}}^t$  is an orthonormal frame, and we apply the transformation  $\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t ST$  where S is a matrix that applies a uniform scale by a factor of 2, and T translates by 1 along the x axis. How far does the frame's origin move, measured in the original units of  $\vec{\mathbf{f}}^t$ ?

7. Consider the following two orthonormal frames  $\vec{\mathbf{a}}^t$  and  $\vec{\mathbf{b}}^t$ 



with distances given by the positive quantities  $d_i$ .

- (a) What are the matrices R and T such that  $\vec{\mathbf{b}}^t = \vec{\mathbf{a}}^t T R$ ?
- (b) What are the matrices R and T such that  $\vec{\mathbf{b}}^t = \vec{\mathbf{a}}^t R T$ ?

Your answers should not contain trigonometric terms in the matrix T.

8. Consider the following three frames.



Let  $\vec{\mathbf{b}}^t = \vec{\mathbf{a}}^t N$  and  $\vec{\mathbf{c}}^t = \vec{\mathbf{a}}^t M$ . Express the matrix M in terms of N and  $\theta$ .