Question Set 4

CS 320

Chapter 4

1. Let

$$
S=\left[\begin{array}{cccc}
0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

What transformation is accomplished by this matrix?
2. Consider S from the previous problem.

(a) Describe $\tilde{p}=\overrightarrow{\mathbf{f}}^{t} \mathbf{c} \Rightarrow \overrightarrow{\mathbf{f}}^{t} S \mathbf{c}$ and draw the transformed point.
(b) Describe $\tilde{p}=\overrightarrow{\mathbf{a}}^{t} \mathbf{c} \Rightarrow \overrightarrow{\mathbf{a}}^{t} S \mathbf{c}$ and draw the transformed point.
3. Let $\tilde{q}=\overrightarrow{\mathbf{f}}^{t} \mathbf{c}$ and $\overrightarrow{\mathbf{a}}^{t}=\overrightarrow{\mathbf{f}}^{t} A$. What are \tilde{q} 's coordinates with respect to $\overrightarrow{\mathbf{a}}^{t}$?
4. State the "left of" rule and illustrate it with an example.
5. Using the definitions of Section 4.2, draw two different sketches illustrating the transformation $\overrightarrow{\mathbf{f}}^{t} \Rightarrow \overrightarrow{\mathbf{f}}^{t} R T$.
6. Suppose $\overrightarrow{\mathbf{f}}^{t}$ is an orthonormal frame, and we apply the transformation $\overrightarrow{\mathbf{f}}^{t} \Rightarrow \overrightarrow{\mathbf{f}}^{t} S T$ where S is a matrix that applies a uniform scale by a factor of 2 , and T translates by 1 along the x axis. How far does the frame's origin move, measured in the original units of $\overrightarrow{\mathbf{f}}^{t}$?
7. Consider the following two orthonormal frames $\overrightarrow{\mathbf{a}}^{t}$ and $\overrightarrow{\mathbf{b}}^{t}$

with distances given by the positive quantities d_{i}.
(a) What are the matrices R and T such that $\overrightarrow{\mathbf{b}}^{t}=\overrightarrow{\mathbf{a}}^{t} T R$?
(b) What are the matrices R and T such that $\overrightarrow{\mathbf{b}}^{t}=\overrightarrow{\mathbf{a}}^{t} R T$?

Your answers should not contain trigonometric terms in the matrix T.
8. Consider the following three frames.

Let $\overrightarrow{\mathbf{b}}^{t}=\overrightarrow{\mathbf{a}}^{t} N$ and $\overrightarrow{\mathbf{c}}^{t}=\overrightarrow{\mathbf{a}}^{t} M$. Express the matrix M in terms of N and θ.

