## Question Set 3

CS 320

## Chapter 3

1. What does õ represent?
2. Practically speaking, what is the difference between a basis and a frame?
3. Given points $\tilde{p}$ and $\tilde{q}$, how do we construct a vector from $\tilde{p}$ to $\tilde{q}$ ?
4. Is translation linear or affine?
5. Is rotation linear or affine?

6 . Does $(3,7,8,1)$ represent a point or a vector?
7. Express the affine matrix

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right]
$$

as the product of its translational and linear factors.
8. Define RBT.
9. These two operations make sense: $\tilde{p}-\tilde{q}=\vec{v}$ (point-point subtraction), and $\tilde{q}+\vec{v}=\tilde{p}$ (pointvector addition). On its face, this operation does not make sense (What is the product of a scalar and a point? What is the sum of two such objects?):

$$
\alpha \tilde{p_{1}}+(1-\alpha) \tilde{p_{2}},
$$

in which $\alpha$ is on the interval $[0,1]$. Algebraically manipulate this operation into a form that does make sense. What is the type (vector or point) of this operation? What is its geometric interpretation?

