Question Set 3

$\mathrm{CS}~320$

Chapter 3

- 1. What does \tilde{o} represent?
- 2. Practically speaking, what is the difference between a basis and a frame?
- 3. Given points \tilde{p} and \tilde{q} , how do we construct a vector from \tilde{p} to \tilde{q} ?
- 4. Is translation linear or affine?
- 5. Is rotation linear or affine?
- 6. Does (3, 7, 8, 1) represent a point or a vector?
- 7. Express the affine matrix

$\begin{bmatrix} a \end{bmatrix}$	b	c	d
e	f	g	h
i	j	k	l
0	0	0	1

as the product of its translational and linear factors.

- 8. Define RBT.
- 9. These two operations make sense: $\tilde{p} \tilde{q} = \vec{v}$ (point-point subtraction), and $\tilde{q} + \vec{v} = \tilde{p}$ (point-vector addition). On its face, this operation does not make sense (What is the product of a scalar and a point? What is the sum of two such objects?):

$$\alpha \tilde{p_1} + (1 - \alpha) \tilde{p_2},$$

in which α is on the interval [0, 1]. Algebraically manipulate this operation into a form that does make sense. What is the type (vector or point) of this operation? What is its geometric interpretation?