Question Set 2

$\mathrm{CS}~320$

Chapter 2

1. Identify the types (basis, coordinate vector, matrix, point, vector) of the variables in this equation

$$\vec{v} = \vec{\mathbf{b}}^t M^{-1} \mathbf{c}$$

2. Draw a figure corresponding to

$$\vec{\mathbf{b}}^t \mathbf{c} \Rightarrow \vec{\mathbf{b}}^t M \mathbf{c}$$

and express this mathematical statement in words.

3. Draw a figure corresponding to

 $\vec{\mathbf{b}}^t \Rightarrow \vec{\mathbf{b}}^t M$

and express this mathematical statement in words.

4. If

 $\vec{v}\cdot\vec{w}=0$

then what do we know?

- 5. Define the term 3D orthonormal basis.
- 6. How is the vector

 $\vec{v}\times\vec{w}$

related to the two vectors in the expression?

- 7. Which of the following are valid expressions in our notation and, if valid, what is the resulting type (invalid, basis, coordinate vector, matrix, point, vector)
 - (a) $\vec{\mathbf{b}}^t M$
 - (b) **c***M*
 - (c) M^{-1} **c**
 - (d) $\vec{\mathbf{b}}^t N M^{-1} \mathbf{c}$
- 8. Given that $\vec{\mathbf{a}}^t = \vec{\mathbf{b}}^t M$, what are the coordinates of the vector $\vec{\mathbf{b}}^t N \mathbf{c}$ with respect to the basis $\vec{\mathbf{a}}^t$? (Your answer will be a mathematical expression.)
- 9. Given that the transformation $\mathcal{T}(\vec{v})$ is defined as $\mathcal{T}(\vec{v}) = \vec{v} + \vec{k}$, show that $\mathcal{T}(\vec{v})$ is not a linear transformation.