
Procedure Call Standard for the ARM Architecture

ARM IHI 0042E Copyright © 2003-2009, 2012 ARM Limited. All rights reserved. Page 14 of 33

5 THE BASE PROCEDURE CALL STANDARD

The base standard defines a machine-level, core-registers-only calling standard common to the ARM and Thumb
instruction sets. It should be used for systems where there is no floating-point hardware, or where a high degree
of inter-working with Thumb code is required.

5.1 Machine Registers

The ARM architecture defines a core instruction set plus a number of additional instructions implemented by co-
processors. The core instruction set can access the core registers and co-processors can provide additional
registers which are available for specific operations.

5.1.1 Core registers

There are 16, 32-bit core (integer) registers visible to the ARM and Thumb instruction sets. These are labeled r0-
r15 or R0-R15. Register names may appear in assembly language in either upper case or lower case. In this
specification upper case is used when the register has a fixed role in the procedure call standard. Table 2, Core
registers and AAPCS usage summarizes the uses of the core registers in this standard. In addition to the core
registers there is one status register (CPSR) that is available for use in conforming code.

Register Synonym Special Role in the procedure call standard

r15 PC The Program Counter.

r14 LR The Link Register.

r13 SP The Stack Pointer.

r12 IP The Intra-Procedure-call scratch register.

r11 v8 Variable-register 8.

r10 v7 Variable-register 7.

r9
v6
SB
TR

Platform register.
The meaning of this register is defined by the platform standard.

r8 v5 Variable-register 5.

r7 v4 Variable register 4.

r6 v3 Variable register 3.

r5 v2 Variable register 2.

r4 v1 Variable register 1.

r3 a4 Argument / scratch register 4.

r2 a3 Argument / scratch register 3.

r1 a2 Argument / result / scratch register 2.

r0 a1 Argument / result / scratch register 1.

Table 2, Core registers and AAPCS usage

Procedure Call Standard for the ARM Architecture

ARM IHI 0042E Copyright © 2003-2009, 2012 ARM Limited. All rights reserved. Page 15 of 33

The first four registers r0-r3 (a1-a4) are used to pass argument values into a subroutine and to return a result
value from a function. They may also be used to hold intermediate values within a routine (but, in general, only
between subroutine calls).

Register r12 (IP) may be used by a linker as a scratch register between a routine and any subroutine it calls (for
details, see §5.3.1.1, Use of IP by the linker). It can also be used within a routine to hold intermediate values
between subroutine calls.

The role of register r9 is platform specific. A virtual platform may assign any role to this register and must
document this usage. For example, it may designate it as the static base (SB) in a position-independent data
model, or it may designate it as the thread register (TR) in an environment with thread-local storage. The usage
of this register may require that the value held is persistent across all calls. A virtual platform that has no need for
such a special register may designate r9 as an additional callee-saved variable register, v6.

Typically, the registers r4-r8, r10 and r11 (v1-v5, v7 and v8) are used to hold the values of a routine’s local
variables. Of these, only v1-v4 can be used uniformly by the whole Thumb instruction set, but the AAPCS does
not require that Thumb code only use those registers.

A subroutine must preserve the contents of the registers r4-r8, r10, r11 and SP (and r9 in PCS variants that
designate r9 as v6).

In all variants of the procedure call standard, registers r12-r15 have special roles. In these roles they are labeled
IP, SP, LR and PC.

The CPSR is a global register with the following properties:

� The N, Z, C, V and Q bits (bits 27-31) and the GE[3:0] bits (bits 16-19) are undefined on entry to or return
from a public interface. The Q and GE[3:0] bits may only be modified when executing on a processor where
these features are present.

� On ARM Architecture 6, the E bit (bit 8) can be used in applications executing in little-endian mode, or in big-
endian-8 mode to temporarily change the endianness of data accesses to memory. An application must have
a designated endianness and at entry to and return from any public interface the setting of the E bit must
match the designated endianness of the application.

� The T bit (bit 5) and the J bit (bit 24) are the execution state bits. Only instructions designated for modifying
these bits may change them.

� The A, I, F and M[4:0] bits (bits 0-7) are the privileged bits and may only be modified by applications designed
to operate explicitly in a privileged mode.

� All other bits are reserved and must not be modified. It is not defined whether the bits read as zero or one, or
whether they are preserved across a public interface.

5.1.1.1 Handling values larger than 32 bits

Fundamental types larger than 32 bits may be passed as parameters to, or returned as the result of, function calls.
When these types are in core registers the following rules apply:

� A double-word sized type is passed in two consecutive registers (e.g., r0 and r1, or r2 and r3). The content of
the registers is as if the value had been loaded from memory representation with a single LDM instruction.

� A 128-bit containerized vector is passed in four consecutive registers. The content of the registers is as if the
value had been loaded from memory with a single LDM instruction.

5.1.2 Co-processor Registers

A machine’s register set may be extended with additional registers that are accessed via instructions in the co-
processor instruction space. To the extent that such registers are not used for passing arguments to and from
subroutine calls the use of co-processor registers is compatible with the base standard. Each co-processor may
provide an additional set of rules that govern the usage of its registers.

