Introduction to Digital Logic

Tom Kelliher, CS 220

1 Administrivia

Today's Objectives

1. Achieve a basic understanding of combinational and sequential digital logic:
(a) AND, OR, NOT, etc. gates.
(b) Basic combinational circuits: full- and half-adders, decoder, multiplexer, etc.
(c) Flip-flops, registers, and counters.
(d) Basic implementation of buses.

Next Up

Read 7.2.1.

1. Understand the capabilities of the register-to-register data path

2 Warm-Up

1. The Boolean equation for output x is

(a) $a b \bar{c}+a$
(b) $a \bar{c}$
(c) $a c+b c$
(d) $a \bar{c}+b c$
(e) None of the above.
2. The Boolean equation for output y is

(a) $a b \bar{c}+a$
(b) $a \bar{c}$
(c) $a c+b c$
(d) $a \bar{c}+b c$
(e) None of the above.
3. The Boolean equation $a b \bar{c}+a$ simplifies to a.

True/False
4. The Boolean function computed by this mux is

(a) \bar{a}
(b) $a+b$
(c) $a b$
(d) $\overline{a b}$
(e) $a \operatorname{XOR} b$
5. The mystery combinational logic element, labeled with ?, in this figure is a

(a) Decoder
(b) Mux
(c) ALU
(d) If I told you, I'd have to permanently "disable" you.
6. What digital logic element, or elements, should be used to read one of many registers onto a single bus?
(a) Muxes
(b) A decoder in combination with muxes.
(c) A decoder in combination with tri-state buffers.
(d) (a) and (b)
(e) (a) and (c)

3 Problem Set 11.0

1. Complete the one-bit ALU on pg. 94 of the textbook by supplementing it with an add/subtract capability.
2. Using a bank of 1632 -bit registers and a 32 -bit ALU, design a data path that could be used to execute ARM instructions such as
```
add r0, r1, r2
and r3, r4, r5
orr r6, r7, r8
```

