ARM Activation Frame Stack

Tom Kelliher, CS 220

1 Administrivia

Today’s Objectives

1. Write ARM programs that pass function parameters, and return function values.

2. Write ARM programs that use the stack frame for the storage of local variables, allow-
ing the implementation of recursion and freeing programs from the limited number of
available registers.

Next Up

Read 2.9-2.11
1. Achieve a basic understanding of combinational and sequential digital logic:
(a) AND, OR, NOT, etc. gates.
(b) Basic combinational circuits: full- and half-adders, decoder, multiplexer, etc.
(c) Flip-flops, registers, and counters.

(d) Basic implementation of buses.



2 Warm-Up

1. The activation frame stack grows toward

(a) It doesn’t grow.
(b) the first memory address — 0.
(c) the last memory address — whatever it may be.

(d) None of the above.



2. Activation frames are necessary

(a) never.

(b) always.

(c) for preserving register values across function calls when functions call other func-
tions.

(d) as backup storage when the number of local variables exceeds the number of
available registers.

(e) (c) and (d).



3. If a leaf routine only uses registers r0-r3, it doesn’t need an activation frame.

True/False.



4. sp (r13) points to an in-use memory location.

True/False.



5. fp (rll)

(a) points to the base of the current activation frame.

(b) can be used to access parameters passed on the stack.

(c) points to a linked list of all activation frames on the stack.

(d) All of the above.

(e) None of the above.



6. According to our convention, we have seven registers (r4-r10) for storing local variables.
A function with more than seven locals

(a) will not “compile.”

(b) Who would write such a function???

(c) must have space allocated in its activation frame to temporarily store unused-at-
the-moment locals.

(d) will use an external set of arrays to store the locals that don’t fit into registers.



3

1.

2.

3.

Problems

Create a new uVision project for factRecursive.s, available on the course web site.
You’ll also need to add map.ini under the debugger settings.

Build the project, open the debugger, and set breakpoints on the three lines indicated
in the program (these will be at/near lines 39, 88, and 124).

Set the memory window so that it displays unsigned ints, starting at memory address
0X450, similar to this:

Memory 1 o
(el (el

Address: (0450 D i

Ox00000450: 00000000 00000000 00000000 00000000 00000000 00000000 00000000
-~ Ox0000046C: 00000000 00000000 00000000 00000000 00000000 00000000 oooooooo
Ox00000455: 00000000 00000000 00000000 00000000 00000000 00000000 00000000

— O0x000004A4: 00000000 00000000 Q0000000 00000000 00000000 Q0000000 00000000
OOO0Nn40 - O0annnnn NNnaaann_o00000a0_ 00000000 an0aa00n_ 00000000 o000

@ Call Stac

i Memory 1

Simulation 1: 0.00000000 sec 1222 1 CAP MUM SCRL OVR| R /W

(Select the Memory1 tab, and then right-click on the memory window itself to select
unsigned int as the display type.)

Run the program. At the first breakpoint, you'll notice that both sp and fp (r1l) are
set to 0X4C0, which is a word-aligned address. With our sp-full protocol, the first push
to the stack will occur to the memory word (address 0X4BC) preceding this memory
word.

Continue execution to the next breakpoint, which immediately follows the creation of
main()’s activation frame. In the memory window, note that four words have been
pushed onto the activation frame stack. These four words are the activation frame for
main().

Continue execution to the next breakpoint, which immediately follows the creation
of fact(6)’s activation frame. In the register’s window, note that r0 has the value 6,
which is how we know that fact(6) is being executed. In the memory window, note
that another three words have been pushed onto the activation frame stack. These
three words are the activation frame for fact(6).

Here is the annotated activation frame stack at this point in the program’s execution:


transparent

(High memory)

Base of stack

0X4BC 0X4C0 —-- stored value of start up’s fp
0X4B8 0X48 ——- stored return address into start up code ma_ln’s_
activation
0X4B4 OXFFFFFFFA ——- stored value of start up’s r5 frame
0X4B0 OXFFFFFFFB ——- stored value of start up’s r4
fp — OX4AC 0x4BC ——- stored value of main’s fp fact(6)'s
0x4A8 0X60 ——- stored return address into main code activation
frame
sp — 0X4A4 OxFFFFFFFB ——- stored value of main’s r4

Top of stack
¢ Stack growth

(Low memory)

7. Produce the complete, annotated activation frame stack at the point of execution of
fact(1)’s activation frame having been pushed onto the stack.

8. Single-step through the execution of fact(1), and continue single-stepping to observe
the recursion “unwind” as fact(n) values are computed, returned, and activation frames
popped from the stack.


transparent

	Administrivia
	Warm-Up
	Problems

