Security Models

Tom Kelliher, CS 325

Oct. 31, 2011

1 Administrivia

Announcements

Status reports due.

Assignment

Read 5.4.

From Last Time

Trust and security policies.

Outline

- 1. Modeling multiple levels of security.
- 2. Modeling theoretical limitations of security systems

Coming Up

Trusted operating system design.

2 Modeling Multiple Levels of Security

That is, the military model.

2.1 Lattice

A lattice defines a partial order on a set using a user-defined \leq operator. The operator must satisfy two properties over the set:

- 1. Transitive: If $a \leq b$ and $b \leq c$ then $a \leq c$.
- 2. Antisymmetric: If $a \leq b$ and $b \leq a$ then a = b.

A *bounded* lattice has a top and bottom:

- 1. t is the top if $x \leq t$ for all x in S.
- 2. b is the bottom if $b \leq x$ for all x in S.

Examples:

- The power set of {a, b, c} under the operation "is a subset of." Is it bounded?
- 2. The natural numbers under the mathematical operation \leq .

Is it bounded? Isn't it a total order?

2.2 Bell-La Padula Confidentiality Model

- 1. Goal is to describe secure information flows and acceptable information flows between subjects and objects.
- 2. Subjects may have read or write access to objects.

3. $C(O_i)$ denotes the classification of O_i .

Similarly, $C(S_i)$ denotes the *clearance* of S_i .

Suppose:

- $C(S_1) = 3.$
- $C(S_2) = 1.$
- $C(O_1) = 2.$
- $C(O_2) = 1.$
- 1. What objects can S_1 be allowed to read? S_2 ?
- 2. If S_1 has read access to O_1 , can it be granted write access to O_2 ?

Necessary properties for ensuring confidentiality:

- 1. Simple security property: S may read O only if $C(O) \leq C(S)$.
- 2. *-Property: If S has read access to O_1 , it may be granted write access to O_2 only if $C(O_1) \leq C(O_2)$.

Information should only flow from less secure objects to more secure objects.

Biba's integrity model is similar — non-trusted information should not influence trusted information.

3 Modeling Theoretical Limitations of Security Systems

1. Is security configuration X attainable?

2. Given security configuration Y, can subject S gain access to object O?

3. Trivial example.

Suppose S_1 has a transferable read right on O_1 .

Can S_2 gain access to O_1 ? Will it?

3.1 Graham-Denning Model

Model consists of subjects, objects, an access control matrix (all subjects are also treated as objects, to implement the "control" right), and a set of rights.

Two special rights: own (on objects) and control (on subjects)

Operations:

- 1. Create object; create subject. Creating subject owns or controls, respectively.
- 2. Delete object; delete subject. Deleting subject must own or control, respectively.
- 3. Read access right R of S on O. Subject must control S or own O.
- 4. Grant right R to S on O. Subject must own O.
- 5. Delete right R of S on O. Subject must own O or control S.
- 6. Transfer right R to S on O. Subject must have R^{*} (transferable version of R) on O.

Graham-Denning is a general access control model.

Harrison-Ruzzo-Ullman generalizes Graham-Denning to ask if certain situations are obtainable.

Take-Grant Systems are yet another model.