
Logical and Branch Instructions; Conditional Execution

Tom Kelliher, CS 220

Sept. 23, 2011

1 Administrivia

Announcements

Assignment

From Last Time

Operands and instruction formats.

Outline

1. Logical instructions.

2. Branch and jump instructions.

3. Compiling conditional statements.

Coming Up

Support for procedures.

1

2 Logical Operations

The basics:

1. NOT: complement the bits of the operand, bit by bit. (~)

2. AND: AND the bits of two operands, bit by bit. (&, not &&).

3. OR: OR the bits of two operands, bit by bit. (|, not ||).

4. Shift: Move the bits of the operand to the left or right a given “distance” (<< and >>).
Complication: logical and arithmetic shifts.

Details:

1. MIPS has no NOT operation, but it does have NOR: ~(a | b).

How do you use NOR to get NOT?

~1101 = 0010

2. 1101 & 1001 = 1001

and $s2, $t0, $t1

3. 1001 | 0100 = 1101

4. Shifts are “similar” to multiplication and division.

11001101 << 3 = 01101000

Usage example: shift and mask operations in finding a character in a word. In C:

int charinword(unsigned char c, unsigned int w)

{

int i;

for (i = 0; i < 4; i++)

{

2

if (c == (0xff & w))

break;

w = w >> 8;

}

return 0;

}

charinword(0xaa, 0xccddaabb);

charinword(0xaa, 0xbbccdaad);

3 Branch and Jump Instructions

1. I-format instructions.

2. The idea behind a branch or jump:

b Label

Label:

. . .

. . .

. . .

Skip over
intermediate
instructions.

3. Branch forward or backward 215 words.

All branch instructions are synthesized from beq, bne, and slt.

Branch instructions use a signed 16-bit offset field; hence they can jump 215
− 1 instructions

(not bytes) forward or 215 instructions backwards. The jump instruction contains a 26 bit
address field (the third instruction format).

Summary of branch instructions:

3

transparent

1. Unconditional branch: b label

Example:

b foo

...

foo: add $1, $1, $1

2. One operand branches:

(a) The list: beqz, bnez, bgez, bgtz, blez, bltz.

(b) Example: bnez $s0, label

3. Two operand branches:

(a) The list: beq, bne, bge, bgt, ble, blt.

Unsigned versions.

(b) Second comparison operand may be a register or a constant:

bge $sp, $ra, foo

blt $s0, 5, bar

4 Compiling HLL Control Structures

Write MIPS code fragments corresponding to the following:

1. Compiling an if:

4

Next instruction

Else block

If block

Branch to EndIf label

!Condition to Else label
Conditional branch on

Else:

EndIf: Next instruction

If block

Condition

Else block

HLL Code Assembly Code

if (i < 12)

++i;

else

--j;

2. Compiling a loop:

Next instruction

Conditional branch onCondition

HLL Code Assembly Code

Loop
block

!Condition to EndLoop label

Loop
block

EndLoop: Next instruction

BeginLoop:

Branch to BeginLoop label

i = 1;

j = 0;

while (i < 200)

{

j += i;

i *= i;

}

5

transparent
transparent

5 Class Assignment

Write MIPS code corresponding/solving each of the following:

1. j = 0;

for (i = 0; i < 10; ++i)

j += i;

2. j = 0;

for (i = 0; i < 10; ++i)

if (i > 5)

j += i;

3. while (i > 0 && i < 10)

++i;

4. if (i < 12 && j > 3 || k != 0)

++i;

else if (i == 33)

--j;

else

k += 2;

5. int i;

for (i = 0; i < 4; i++)

{

if (c == (0xff & w))

return 1;

w = w >> 8;

}

6. (3.9 from the 3rd edition of the text) The naive way of compiling

while (save[i] == k)

i += k;

requires execution of both a conditional branch and an unconditional jump each time
through the loop. Produce the naive code.

Optimize the naive code so that only a conditional branch is executed each time through
the loop.

6

7. (3.24 from the 3rd edition of the text, a variation) Write a code segment which takes
two “parameters:”

(a) An ASCII character in $a0.

(b) A pointer to a NULL-terminated string in $a1.

and “returns” a count of the number of occurrences of the character in the string in
$v0.

7

