
Introduction to Pipelining

Tom Kelliher, CS 220

Nov. 21, 2011

1 Administrivia

Announcements

Date for second exam?

Assignment

From Last Time

Single-cycle implementation.

Outline

1. Introduction to pipelining; comparison with single-cycle implementation.

2. Architectural features encouraging pipelining.

Coming Up

Pipeline hazards.

1

2 Introduction to Pipelining

The laundry analogy:

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

The five stage MIPS pipeline:

1. Instruction fetch.

2. Decode and read registers.

The consistent placement of the source registers permits this.

3. Execute ALU operation or calculate an address.

4. Access memory.

5. Result write-back.

2

transparent

2.1 Comparison of Single-Cycle and Pipelined Performance

Assume:

1. Memory access is 200 ps.

2. ALU use is 200 ps.

3. Register file access is 100 ps.

Instruction class times:

Instruction Register ALU Data Register Total

Instruction Class fetch read operation access write time

lw 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

sw 200 ps 100 ps 200 ps 200 ps 700 ps

R-format 200 ps 100 ps 200 ps 100 ps 600 ps

beq 200 ps 100 ps 200 ps 500 ps

Clock periods for the two implementations?

Execution example:

Instruction

fetch

Reg ALU
Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data

access

Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program

execution

order

(in instructions)

Instruction

fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access

Reg

2 ns
Instruction

fetch
Reg ALU

Data

access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program

execution

order

(in instructions)

3

transparent

Note that pipelined register file reads are done during the second half of the clock cycle and
writes are done during the first half. Why?

Consider the speedup:

1. Assumption: Stages are of equal length. What if they aren’t?

2. Speedup is at most the number of pipeline stages.

Do we achieve that?

Consider the execution of 1,000 instructions and compute the actual speedup.

What happened? The cost of the pipeline registers.

Consider:

• How does the speedup occur: shortened instruction execution time or higher instruction
bandwidth?

3 Architectural Features Encouraging Pipelining

1. A single instruction size: simplifies instruction fetch.

2. A small number of instruction formats, with register fields in common locations for all
formats: simplifies instruction decode and allows register fetch to proceed in parallel.

3. Memory operands occur only in sw/lw instructions: simplifies pipeline design and
decreases pipeline depth.

4. Memory data is aligned: a memory operation requires only a single memory read or
write.

4

	Administrivia
	Introduction to Pipelining
	Comparison of Single-Cycle and Pipelined Performance

	Architectural Features Encouraging Pipelining

