
Binary Addition, Subtraction, and Multiplication

Tom Kelliher, CS 220

Nov. 2, 2011

1 Administrivia

Announcements

Assignment

Read 3.5, 3.7.

From Last Time

Project discussion.

Outline

1. Binary Addition.

2. Binary Subtraction.

3. Overflow.

4. Binary Multiplication.

1



Coming Up

Floating point.

2 Binary Addition

1. Similar to decimal addition.

2. Nomenclature: Augend + Addend = Sum

3. Eight bit example: 0x15 + 0x4C.

3 Binary Subtraction

1. Nomenclature: Minuend − Subtrahend = Difference

2. To subtract, we add. How?

3. Eight bit example: 0x15 - 0x4C.

4 Overflow

1. In eight bits, consider 0x7F + 0x1. Augend and Addend are positive, but the sum is
negative.

How can this be?

Would we have this result if we were working in 16 bits?

2. Overflow: when the sign of the result is wrong.

3. If we are adding two numbers of different signs or subtracting two numbers of the same
sign, we will not have overflow. Why?

4. Overflow cases:

2



Operation A B Overflow Result

A + B ≥ 0 ≥ 0 < 0
A + B < 0 < 0 ≥ 0
A − B ≥ 0 < 0 < 0
A − B < 0 ≥ 0 ≥ 0

5. Addition logic:

if the signs of A and B are the same

if the signs of A and Sum are different

overflow has occured.

Subtraction is similar.

A compact way of writing this in C:

if (a ^ b >= 0 && a ^ sum < 0)

overflow();

6. Overflow and programming languages:

(a) C: no overflow exceptions. Uses addu, etc.

(b) FORTRAN: overflow exceptions. Uses add, etc.

What’s an exception?

5 Binary Multiplication

1. Consider paper and pencil binary unsigned multiplication:

(a) Shift multiplicand left one bit position after each add/hold cycle.

(b) Add/hold depending upon current multiplier bit (examine lsb; shift right).

(c) Example: 1101 × 0110.

3



(d) Multiplying two n-bit numbers results in a 2n-bit result.

2. Naive 32-bit shift-and-multiply hardware:

Load

ALU

Multiplicand

Partial Prod.

’ier

Control

Shift

ShiftOp

How many bits in the datapath? Demonstrate on board .

Running time?

3. Observation: Shifting multiplicand left and keeping partial product stationary is equiv-
alent to keeping multiplicand stationary and shifting partial product right.

(a) Bonus 1: only 32-bits are added at any one time.

(b) Bonus 2: the multiplier can be stored in the unused part of the partial product
register.

More sophisticated 32-bit shift-and-multiply hardware:

’cand

ALU

Control

Op

PP/’ier
Sh,Ld

4

transparent
transparent


Demonstrate on board .

4. Optimal running time: O(log n), achieved with tree of carry-save adders with CLA
adder at root.

5


	Administrivia
	Binary Addition
	Binary Subtraction
	Overflow
	Binary Multiplication

