
Pointers in C; Base & Offset Addressing

Tom Kelliher, CS 220

Sept. 14, 2011

1 Pointers in C

A pointer is a typed variable that holds the memory address of a variable of the appropriate type.
The unary operator & returns the memory address (location) of a variable. If i is of type int, then
&i is of type pointer to int. The unary operator * (not to be confused with the binary multiplication
operator) has two context-dependent meanings:

1. In a variable declaration, * indicates that the variable’s type is pointer to some base type —
see the example below.

2. In an expression, * “dereferences” a pointer variable, chasing the memory address to the
variable to which the pointer points. Again, see the example below.

Note that if ip is type pointer to int then *ip is type int. Thus, the * and & operators are
inverses of each other.

Example:

double x = 0.0;

double *dblPtr; /* pointer to double */

int i = 1;

int *intPtr; /* pointer to int */

int **intPtrPtr; /* pointer to pointer to int --- intPtrPtr hold the

* memory address of another pointer

*/

dblPtr = &x;

intPtr = &i;

intPtrPtr = &intPtr;

Given the example code above, what is the value of each of the following expressions:

1. i, x.

2. Assign appropriate values to the following expressions so that you can assign values to the
expressions in the following questions:

(a) &x

(b) &i

(c) &intPtr

1

3. dblPtr, *dblPtr.

4. intPtr, *intPtr.

5. intPtrPtr, *intPtrPtr, **intPtrPtr

2 Base & Offset Addressing

Consider the following C program (available on the class web site as baseoffset.c for copy &
paste purposes):

#include <stdio.h>

int main()

{

int offset;

int *base;

int A[8] = { 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0 };

offset = 0;

base = &A[0];

printf("Legend:\n <Variable>: <Value> @ <Address> : <Sizeof> \n\n");

printf("offset: %X @ %X : %d\n", offset, &offset, sizeof(offset));

printf("base: %X @ %X : %d\n", base, &base, sizeof(base));

for (offset = 0; offset < 8; offset++)

printf("A[%d]: %X @ %X : %d\n", offset, *(base + offset),

base + offset, sizeof(*(base + offset)));

return 0;

}

1. Note the use of base & offset addressing in the body of the for loop:

printf("A[%d]: %X @ %X\n", offset, *(base + offset), base + offset);

(a) What is the type of base? What type of data does it hold?

(b) What is the type of offset What type of data does it hold?

(c) What is the type of the expression base + offset?

(d) What is the difference between the expression *(base + offset) and the expression
base + offset?

2. Using NX, logon to phoenix.

3. Download and compile the program:

% gcc -m32 -o baseOffset baseOffset.c

2

4. Run the program a couple times, noting any differences between the run outputs:

% ./baseOffset

5. Answer these questions:

(a) How do the outputs differ, run-to-run? Why do they differ?

(b) All variables used by the program are word-sized (32 bits).

Is memory word addressable or byte addressable?

Are the variables word-aligned?

6. Interpret the output. Consider these points:

(a) The value of offset is incremented by one for each iteration of the for loop, yet the
addresses of successive array elements differ by four. Why is that?

(b) What is the relationship between the value of base and the first element of the array?

7. Draw a memory map showing how the variables are layed-out in memory and the relationships
between the variables.

8. Re-compile the program with this slight variation in the command line switches:

% gcc -m64 -o baseOffset baseOffset.c

Run the program. One of the sizeof values has changed. Can you explain why that value
has changed?

3

