Introduction

Tom Kelliher, CS 220 $\,$

Aug. 29, 2011

1 Administrivia

Announcements

Assignment

Read 1.4.

Outline

- 1. Syllabus.
- 2. Introduction.

Coming Up

Performance measurement.

2 Introduction

What is computer organization and why is it important? The three dimensions involved in optimizing traditional performance:

- 1. Algorithms.
- 2. Organization/architecture.
- 3. Technology.

A new performance criterion: power. Determined by voltage, transistor count, clock rate.

Examples of problems to be solved:

- 1. Encoding/decoding video/audio.
- 2. Data mining.
- 3. Sequence matching.
- 4. Simulation
- 5. Finding/organizing/querying data.

Questions to consider:

- 1. How do we translate human readable programs into machine readable programs? What are the steps?
- 2. What is architecture the crux of the software/hardware interface.
- 3. Performance. What is it? How do we improve it?
- 4. What has fueled the transition from uniprocessing to multiprocessing (multiple cores, multiple CPU chips)? What are the consequences? How was program parallelism handled earlier?

3 The March of Technology

Moore's law: the number of transistors on a chip doubles every two years. What has this given us?

Some more recent figures:

Processor	Year	Transistor Count
AMD Athlon 64	2003	105,900,000
Intel Core 2 Duo	2006	291,000,000
Intel Core 2 Quad	2006	582,000,000
NVIDIA G80	2006	681,000,000
Intel Dual Core Itanium 2	2006	1,700,000,000
Six Core Xeon 7400	2008	$1,\!900,\!000,\!000$
AMD RV770	2008	956,000,000
NVIDIA GT200	2008	$1,\!400,\!000,\!000$
Eight Core Xeon Nehalem-EX	2010	$2,\!300,\!000,\!000$
10 Core Xeon Westmere-EX	2011	$2,\!600,\!000,\!000$
AMD Cayman	2010	$2,\!640,\!000,\!000$
NVIDIA GF100	2010	3,000,000,000
Altera Stratix V	2011	3,800,000,000

(G80: 128 stream processors — FPUs; RV770 800 SPs; GT200 240 SPs; GF100 512 SPs)

What have architects done with these transistors?

CPUs: lots of transistors tied up in caches.

GPUs: FPU-intensive.

Interestingly, it's not easy to get transistor counts for mobile platforms, such as the OMAP 4. Why?

4 Computing Systems

- 1. Personal systems: desktop and laptops.
- 2. Servers: Today's "mainframes." File servers have more storage and faster I/O; CPU speed not so critical. Compute servers tend to have more of everything.
- 3. Supercomputers: super servers. Large scale simulations weather, automotive, nuclear.
- 4. Embedded: the largest category. Where are they?

Most CPU sales: ARM processors, in cell phone handsets

Layered system design:

- 1. Hardware.
- 2. Operating system.
- 3. System software.

- 4. Application software.
- 5. User.

Compilation process:

- 1. HLL and compiler.
- 2. Assembly and assembler.

One-to-one correspondence to machine code (usually).

3. Binary machine code.

How does Java fit into this model?

Components of a computer:

- 1. Input, output.
- 2. Memory.

Hierarchy:

- (a) Registers.
- (b) L1 and L2 caches.
- (c) Memory.
- (d) Hard disk.
- (e) Floppy, CD, Zip, flash drive, tape, etc.

Technologies:

- (a) Flip flops.
- (b) Static, dynamic RAM.
- (c) Flash
- (d) Disk technology.
- 3. CPU. Control, datapath.

Memory and I/O can't always keep up.

5 Odds and Ends

1. An awful lot if packed into a laptop (or an iPhone):

2. Photomicrograph of a 4 core AMD chip:

3. Block diagram of same chip:

Buses:

- (a) Hypertransport: front-side bus, multiprocessor interconnect, etc.
- (b) Northbridge: "fast" I/O devices.

Relative performance of various technologies:

Ye ar	Technology used in computers	Relative performance/ unit cost
1951	Vanoom (ube	I
1965	Pansistor	35
1975	Integrated circut	900
1995	Verylarge-scale integraed circuit	2,400,000
2005	Ultra lage-ocale integrated circuit	6,200,000,000