Introduction

Tom Kelliher, CS 220

Aug. 29, 2011

1 Administrivia

Announcements

Assignment

Read 1.4.

Outline

1. Syllabus.
2. Introduction.

Coming Up

Performance measurement.

2 Introduction

What is computer organization and why is it important? The three dimensions involved in optimizing traditional performance:

1. Algorithms.
2. Organization/architecture.
3. Technology.

A new performance criterion: power. Determined by voltage, transistor count, clock rate.

Examples of problems to be solved:

1. Encoding/decoding video/audio.
2. Data mining.
3. Sequence matching.
4. Simulation
5. Finding/organizing/querying data.

Questions to consider:

1. How do we translate human readable programs into machine readable programs? What are the steps?
2. What is architecture - the crux of the software/hardware interface.
3. Performance. What is it? How do we improve it?
4. What has fueled the transition from uniprocessing to multiprocessing (multiple cores, multiple CPU chips)? What are the consequences? How was program parallelism handled earlier?

3 The March of Technology

Moore's law: the number of transistors on a chip doubles every two years. What has this given us?

Some more recent figures:

Processor	Year	Transistor Count
AMD Athlon 64	2003	$105,900,000$
Intel Core 2 Duo	2006	$291,000,000$
Intel Core 2 Quad	2006	$582,000,000$
NVIDIA G80	2006	$681,000,000$
Intel Dual Core Itanium 2	2006	$1,700,000,000$
Six Core Xeon 7400	2008	$1,900,000,000$
AMD RV770	2008	$956,000,000$
NVIDIA GT200	2008	$1,400,000,000$
Eight Core Xeon Nehalem-EX	2010	$2,300,000,000$
10 Core Xeon Westmere-EX	2011	$2,600,000,000$
AMD Cayman	2010	$2,640,000,000$
NVIDIA GF100	2010	$3,000,000,000$
Altera Stratix V	2011	$3,800,000,000$

(G80: 128 stream processors - FPUs; RV770 800 SPs; GT200 240 SPs; GF100 512 SPs)

What have architects done with these transistors?

CPUs: lots of transistors tied up in caches.

GPUs: FPU-intensive.

Interestingly, it's not easy to get transistor counts for mobile platforms, such as the OMAP 4. Why?

4 Computing Systems

1. Personal systems: desktop and laptops.
2. Servers: Today's "mainframes." File servers have more storage and faster I/O; CPU speed not so critical. Compute servers tend to have more of everything.
3. Supercomputers: super servers. Large scale simulations - weather, automotive, nuclear.
4. Embedded: the largest category. Where are they?

Most CPU sales: ARM processors, in cell phone handsets

Layered system design:

1. Hardware.
2. Operating system.
3. System software.
4. Application software.
5. User.

Compilation process:

1. HLL and compiler.
2. Assembly and assembler.

One-to-one correspondence to machine code (usually).
3. Binary machine code.

How does Java fit into this model?

Components of a computer:

1. Input, output.
2. Memory.

Hierarchy:
(a) Registers.
(b) L1 and L2 caches.
(c) Memory.
(d) Hard disk.
(e) Floppy, CD, Zip, flash drive, tape, etc.

Technologies:
(a) Flip flops.
(b) Static, dynamic RAM.
(c) Flash
(d) Disk technology.
3. CPU. Control, datapath.

Memory and I/O can't always keep up.

5 Odds and Ends

1. An awful lot if packed into a laptop (or an iPhone):

2. Photomicrograph of a 4 core AMD chip:

3. Block diagram of same chip:

Buses:
(a) Hypertransport: front-side bus, multiprocessor interconnect, etc.
(b) Northbridge: "fast" I/O devices.

Relative performance of various technologies:

Vs\%	Technobgy used in combuters	fehtive pertommace unit cost
1985	Farurus tube	I
1965	Fansisior	35
1975	Interater circui	900
19985		2,400,000
2005		6,200,000,000

