Building a Simple MIPS Datapath

Tom Kelliher, CS 220
Nov. 4, 2005

1 Administrivia

Announcements

Assignment

Read 5.4.

From Last Time

Comparing performance.

Outline

1. Quick introduction to digital logic.

2. Overview of the MIPS implementation.

Coming Up

Completing the datapath.
2 Quick Introduction to Digital Logic

(Register for CS 240 for the complete introduction.)

2.1 Combinational Logic

1. Basic logic gates: Inverter, AND, OR.

2. One bit full adder:
 (a) From truth table to gates.
 (b) Multiple bit adders.

3. 2-1 mux:
 (a) What is it and why do we need it?
 (b) From truth table to gates.

2.2 Sequential Logic and Examples

1. The clock signal.

 \[\text{1} \quad \text{0} \quad \text{1} \quad \text{0} \quad \text{1} \quad \text{0} \]

 Sequential elements are \textit{rising edge sensitive}.

2. Clocking registers.
3. A simple pipeline.

4. A loadable counter.
3 Overview of the MIPS Implementation

Instruction set subset we’ll consider:

1. \texttt{lw/sw}.

2. \texttt{add, sub, and, or, slt}.

3. \texttt{beq}.

4. \texttt{j}.

The general instruction cycle:

1. Instruction fetch.

2. Instruction decode.

3. Register fetch.

4. Operate.

5. Register store or memory operation.

How do the steps of the cycle fit each of the three instruction classes: arithmetic-logic, memory reference, branch?
A high level view of the implementation, in view of the instruction cycle:

1. Datapath only.

2. Is everything we need for our instructions here?

3. Why two memories?