Binary Logic, Gates, and Boolean Algebra

Tom Kelliher, CS 220 Sept. 12, 2003

1 Administrivia

Announcements

Assignment

Read 2.3–4. Written assignment due 9/19.

From Last Time

Radix conversions, characters codes, parity.

Outline

- 1. Binary logic and Gates.
- 2. Boolean Algebra.

Coming Up

Standard forms, maps, and minimization.

2 Binary Logic and Gates

 $1. \ \ Fundamental\ operators\ and\ their\ symbols:$

	(a) AND
	(b) OR
	(c) NOT
2.	NAND is complete.
3.	Gate fan-in and fan-out. Electrical significance.
4.	Timing diagram.
	(a) Frequency and period.
	(b) Timing diagrams. Show AND, OR, NOT waveforms for input: A: 0011, B: 0101.
	(c) What do the waveforms really look like: propagation delay, noise, under- and over-shoot.
	Boolean Algebra
1.	Boolean Algebra Boolean functions can be represented by equations, truth tables, or logic circuits.
1.	
1.	Boolean functions can be represented by equations, truth tables, or logic circuits.
	Boolean functions can be represented by equations, truth tables, or logic circuits. How do you convert from one form to another?
•	3.

1. X + 0 = X	$2. X \cdot 1 = X$
3. X + 1 = 1	4. $X \cdot 0 = 0$
5. X + X = X	$6. X \cdot X = X$
$7. X + \overline{X} = 1$	$8. \ X \cdot \overline{X} = 0$
9. $\overline{\overline{X}} = X$	
10. X + Y = Y + X	11. XY = YX
12. $X + (Y + Z) = (X + Y) + Z$	$13. \ X(YZ) = (XY)Z$
$14. \ X(Y+Z) = XY + YZ$	15. $X + YZ = (X + Y)(X + Z)$
16. $\overline{X+Y} = \overline{X} \cdot \overline{Y}$	17. $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

4 Exercises

Example simplification. Use Boolean manipulation to show: $Y+\overline{X}Z+X\overline{Y}=X+Y+Z$ Begin the homework problems.