VHDL I

Tom Kelliher, CS 220

Oct. 15, 2003

1 Administrivia

Announcements
May have jury duty Wednesday. Watch e-mail.

Assignment

Re-read 3.13.

From Last Time

Signed binary addition and subtraction.

Outline

1. VHDL program structure.
2. Structural VHDL.
3. Class practice.

Coming Up

VHDL II.

2 VHDL Program Structure

VHDL is case insensitive!!

1. Structure of a VHDL program:
```
Library includes;
Entity declaration;
Architectural definition of entity;
```

2. Library includes:
```
-- This is a comment.
library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf_vhdl_.func_prims.all;
```

Reserved words: library, use, .all.
Similar to import, include statements.
3. Entity declaration:

```
entity entity_name is
    port(i0, i1, i2 : in std_logic;
        o0 : out std_logic);
end entity_name;
```

Reserved words: entity, is, port, in, out, end.
Note that entity_name follows end.
4. Architectural definition of entity:

```
architecture arch_name of entity_name is
    component declarations;
    signal declarations;
        begin
        VHDL statements;
end arch_name;
```

Reserved words: architecture, of, begin.
entity_name must match. arch_name is just a "place holder" _ possible to describe an entity with multiple architectures.

Again, note that arch_name follows end.
5. Component declaration:

```
component component_name
    port(i0, i1 : in std_logic;
            o0 : out std_logic);
end component;
```

Reserved words: component.
Like base class declarations in $\mathrm{C}++$.
6. Signal declarations:
signal s0, s1, s2 : std_logic;

Similar to variable declarations.

3 Structural VHDL

1. Describes structure of a circuit - similar to netlist. Low-level description.
2. Example: Three input EXOR.

Equation: $\overline{i_{2}} \overline{i_{1}} i_{0}+\overline{i_{2}} i_{1} \overline{i_{0}}+i_{2} \overline{i_{1}} \overline{i_{0}}+i_{2} i_{1} i_{0}$
VHDL:

```
library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf_vhdl_.func_prims.all;
entity EXOR2 is
    port(i2, i1, i0 : in std_logic;
        o : out std_logic);
end EXOR2;
arch structural of EXOR2 is
    component NOT1
        port(in1 : in std_logic;
            out1 : out std_logic;);
end component;
    component NAND3
        port(in1, in2, in3 : in std_logic;
            out1 : out std_logic);
end component;
component NAND4
        port(in1, in2, in3, in4 : in std_logic;
            out1 : out std_logic);
end component;
signal i2_n, i1_n, i0_n, t3, t2, t1, t0 : std_logic;
begin
        g0: NOT1 port map(i2, i2_n);
        g1: NOT1 port map(i1, i1_n);
        g2: NOT1 port map(i0, i0_n);
        g3: NAND3 port map(i2_n, i1_n, i0, t3);
        g4: NAND3 port map(i2_n, i1, i0_n, t2);
        g5: NAND3 port map(i2, i1_n, i0_n, t1);
        g6: NAND3 port map(i2, i1, i0, t0);
        g7: NAND4 port map(t3, t2, t1, t0, o);
end structural;
```


4 Class Practice

Write structural VHDL for carry bit of full adder.

