Signed Binary Addition and Subtraction

Tom Kelliher, CS 220

Oct. 13, 2003

1 Administrivia

Announcements

Assignment

Read 3.13

From Last Time

Exam.

Outline

1. Complements.
2. Subtraction using 2's complement.
3. Signed numbers.
4. Combined 2's complement adder/subtractor.

Coming Up

VHDL.

2 Complements

Used for signed representations.

1. Diminished radix complement: 1's complement.
(a) The 1 's complement of an n bit binary number A is $2^{n}-1-A$.
(b) What's the bit representation of $2^{n}-1$? The one's complement of A ? A plus its one's complement?
2. Radix complement: 2's complement.
(a) The 2 's complement of an n bit binary number A is $2^{n}-A$.
(b) 1's complement plus one.

Two's complement of A ? A plus its two's complement?

3 Subtraction Using 2's Complement

Subtract by adding!

Adding works the same.

1. Denote the 2 's complement of B as B^{\prime}.

Recall $B^{\prime}=2^{n}-B$.
2. $A-B=A+B^{\prime}-2^{n}$.

Note we should get a carry out of the msb when we perform $A+B^{\prime}$.
3. Work the two examples again.

4 Signed Numbers

Skip sign-magnitude representation.

1. The Complement (1's, 2 's) of a number is its additive identity.

Well, almost. What's the 1's complement of 0 ? In 1 's complement, what does a number and its complement add to?
2. Msb is sign bit. Weight of sign bit. 2's complement: -2^{n-1}. 1 's complement: $-2^{n-1}-1$. Bit patterns for: most positive number, most negative number, 1, -1 .
3. Range:
(a) 2's complement
(b) 1's complement

4.1 Practice

For six bit numbers, what is the range of:

1. Unsigned integers.
2. 1's complement integers.
3. 2's complement integers.

In 1's and 2's complements, what are the representations of $15,-18,27,-4,33,-32,-35,10$?

5 A 2's Complement Combined Adder/Subtractor

1. 2's complement: invert bits, add one.
2. EXOR gate can be used as a conditional inverter.
3. We're not using C_{0} for anything.

Computes $\mathrm{A}+\mathrm{B}$ or $\mathrm{A}-\mathrm{B}$.

