Binary Addition and Subtraction

Tom Kelliher, CS 220

Oct. 3, 2003

1 Administrivia

Announcements

Written assignment due Monday.

Assignment

Read 3.10

From Last Time

Decoders, encoders, muxes.

Outline

1. Binary Adders
2. Unsigned binary subtraction; complements.

Coming Up

Combined signed addition/subtraction.

2 Binary Adders

1. Two half-adders and an OR gate give us a full binary adder. In the text, note how an earlier computed XOR is used to eliminate a gate from the carry equation.
2. Full binary adder: three inputs, two outputs.
3. Ripple carry adder: example of reuse and divide and conquer.
(a) Wire together n full binary adders in order to add two n bit numbers.

Wiring example.
(b) Running time of a ripple carry adder.

Running time of a full binary adder is $\mathrm{O}(1)$. Ripple carry adder?

Excessive!!!

4. An $\mathrm{O}(1)$ (!!!) adder.
(a) Important equations (briefly explain):

Carry generate at bit position i : $G_{i}=A_{i} B_{i}$.
Carry propagate at position $i: P_{i}=A_{i} \oplus B_{i}$.
(b) Carry-in is C_{0}.
$C_{1}=G_{0}+P_{0} C_{0}$.
$C_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$.
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}$.
Etc.
(c) What's the circuit depth of C_{i} ?
(d) What's wrong with this picture?
5. Carry lookahead addition.
(a) A different type of divide and conquer adder using a tree hierarchy to compute and distribute carry information.
(b) What's the height of a binary tree? (CLA is not binary, more like quad, but that's ok.)
(c) What's the running time of a CLA?

3 Unsigned Binary Subtraction

Unsigned here means we can use a minus sign. Realistic?

Let $\mathrm{A}=110101$ and $\mathrm{B}=011010$. Compute $A-B$ and $B-A$.
$A-B$: fine. $B-A$: borrow out of msb.

1. Actual value computed: $2^{n}+B-A$.
2. We want $-(A-B)$.
3. So, compute $2^{n}-\left(2^{n}+B-A\right)=A-B$.

The borrow into the msb leads us to the notion of complements.

3.1 Complements

Used for signed representations.

1. Diminished radix complement: 1's complement.
(a) The 1 's complement of an n bit binary number A is $2^{n}-1-A$.
(b) What's the bit representation of $2^{n}-1$? The one's complement of A ? A plus its one's complement?
2. Radix complement: 2's complement.
(a) The 2 's complement of an n bit binary number A is $2^{n}-A$.
(b) 1's complement plus one.

Two's complement of A ? A plus its two's complement?

Adding to subtract:

1. Denote the 2's complement of B as B^{\prime}.

Recall $B^{\prime}=2^{n}-B$.
2. $A-B=A+B^{\prime}-2^{n}$.

Note we should get a carry out of the msb when we perform $A+B^{\prime}$.
3. Work the two examples again.

