Binary Addition and Subtraction

Tom Kelliher, CS 220 $\,$

Oct. 3, 2003

1 Administrivia

Announcements

Written assignment due Monday.

Assignment

Read 3.10

From Last Time

Decoders, encoders, muxes.

Outline

- 1. Binary Adders
- 2. Unsigned binary subtraction; complements.

Coming Up

Combined signed addition/subtraction.

2 Binary Adders

- 1. Two half-adders and an OR gate give us a full binary adder. In the text, note how an earlier computed XOR is used to eliminate a gate from the carry equation.
- 2. Full binary adder: three inputs, two outputs.
- 3. Ripple carry adder: example of reuse and divide and conquer.
 - (a) Wire together n full binary adders in order to add two n bit numbers.Wiring example.
 - (b) Running time of a ripple carry adder.Running time of a full binary adder is O(1). Ripple carry adder?Excessive!!!
- 4. An O(1) (!!!) adder.
 - (a) Important equations (briefly explain):
 Carry generate at bit position i: G_i = A_iB_i.
 Carry propagate at position i: P_i = A_i ⊕ B_i.
 - (b) Carry-in is C_0 .

$$C_1 = G_0 + P_0 C_0.$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0.$$

$$C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0.$$

Etc.

- (c) What's the circuit depth of C_i ?
- (d) What's wrong with this picture?
- 5. Carry lookahead addition.

- (a) A different type of divide and conquer adder using a tree hierarchy to compute and distribute carry information.
- (b) What's the height of a binary tree?

(CLA is not binary, more like quad, but that's ok.)

(c) What's the running time of a CLA?

3 Unsigned Binary Subtraction

Unsigned here means we can use a minus sign. Realistic?

Let A = 110101 and B = 011010. Compute A - B and B - A.

- A B: fine. B A: borrow out of msb.
 - 1. Actual value computed: $2^n + B A$.
 - 2. We want -(A B).
 - 3. So, compute $2^n (2^n + B A) = A B$.

The borrow into the msb leads us to the notion of complements.

3.1 Complements

Used for *signed* representations.

- 1. Diminished radix complement: 1's complement.
 - (a) The 1's complement of an n bit binary number A is $2^n 1 A$.
 - (b) What's the bit representation of $2^n 1$? The one's complement of A? A plus its one's complement?

- 2. Radix complement: 2's complement.
 - (a) The 2's complement of an n bit binary number A is $2^n A$.
 - (b) 1's complement plus one.

Two's complement of A? A plus its two's complement?

Adding to subtract:

1. Denote the 2's complement of B as B'.

Recall $B' = 2^n - B$.

2. $A - B = A + B' - 2^n$.

Note we should get a carry out of the msb when we perform A + B'.

3. Work the two examples again.