
Shift Registers

Tom Kelliher, CS 220

Nov. 10, 2003

1 Administrivia

Announcements

Friday’s exam will cover:

• Chapter 3: Sections 8–10, 13.

• Chapter 4: Sections 1–8.

Assignment

Read 5.4–5.

From Last Time

Registers

Outline

1. Shift registers defined.

2. Serial Addition.

1



3. VHDL

Coming Up

Counters

2 Shift registers defined

1. Why is a parallel register parallel?

2. So, we would expect a shift (serial) register to look like:

Clk

D D D D SOSI

SO = SI four clocks later.

Using 2-1 muxes, how would you modify this to incorporate a shift control signal?

3. Parallel register with shift:

SO

D Q

Ld

Shift

SI

D and Q are buses.

2



3 Serial Addition

1. Suppose you have two serial bit streams, A and B. Design a serial adder using one one
bit full adder and one D flip-flop.

If A and B are n bits, the output can be how many bits?

2. Suppose A and B are shifted in on a single bit line. Is it possible for us to do the
addition? (One shift register needed.)

3. What does a left shift by one do to the value of an unsigned number?

Use this to design a sequential circuit which takes A as serial input and outputs 3A.

4 VHDL for Serial Registers

Parallel load, shift left or right, hold.

-- Parallel load shift register. Shift left or right.

-- Mode bits:

-- 00: hold

-- 01: load

-- 10: shift left (toward msb)

-- 11: shift right (toward lsb)

--

-- msi: most significant shift in.

-- lsi: least significant shift in.

library ieee;

use ieee.std_logic_1164.all;

entity shift_reg is

port (

d : in std_logic_vector (31 downto 0);

mode : in std_logic_vector (1 downto 0);

clk, reset_n : in std_logic;

msi, lsi : in std_logic;

q : out std_logic_vector (31 downto 0));

3



end shift_reg;

architecture behavioral of shift_reg is

signal state : std_logic_vector (31 downto 0);

begin -- behavioral

q <= state; -- Update output.

state_register: process (clk, reset_n)

begin -- process state_register

if reset_n = ’0’ then -- asynchronous reset (active low)

state <= X"00000000";

elsif clk’event and clk = ’1’ then -- rising clock edge

if mode = "00" then -- Hold.

state <= state;

elsif mode = "01" then -- Load.

state <= d;

elsif mode = "10" then -- Shift left.

state <= state (30 downto 0) & lsi;

else -- Shift right.

state <= msi & state (31 downto 1);

end if;

end if;

end process state_register;

end behavioral;

4


