
Conditional Execution

Tom Kelliher, CS 220

Dec. 8, 2003

1 Administrivia

Announcements

Assignment

Nothing new.

From Last Time

Operands and instruction formats.

Outline

1. Immediate operands.

2. Branch and jump instructions.

3. Compiling HLL control structures.

4. Class teamwork assignment.

1

Coming Up

Procedure invocation I.

2 Immediate Operands

1. Operand types (addressing modes) we’ve seen so far: registers, memory.

2. What about constants? Where have we already seen immediates? Arithmetic example:

addi $t0, $s0, 8 # An immediate operand.

Why no subi?

3. Immediate operand: found within the instruction itself.

4. Small immediates occur frequently, so...

5. Design principle 4: Make the common case fast.

6. But, how do I load a 32-bit immediate? lui followed by addi (whoops, sign extension)
or ori:

lui $s0, 0x5555

ori $s0, $s0, 0xaaaa

7. How does the assembler manufacture 32-bit immediates for us? Register $at.

8. Programmer conventions. “Enhanced” assembly language. Simplicity.

3 Branch and Jump Instructions

1. I-format instructions.

2

2. The idea behind a branch or jump:

instructions.

br Label

Label:

. . .

. . .

. . .

Skip over
intermediate

3. Branch forward or backward 215 words.

The complete set, all synthesized from beq, bne, and slt.

Branch instructions use a signed 16-bit offset field; hence they can jump 215− 1 instructions
(not bytes) forward or 215 instructions backwards. The jump instruction contains a 26 bit
address field (the third instruction format).

b label Branch instruction
Unconditionally branch to the instruction at the label.

beq Rsrc1, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals
Src2.

beqz Rsrc, label Branch on Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrc1, Src2, label Branch on Greater Than Equal
bgeu Rsrc1, Src2, label Branch on GTE Unsigned
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
greater than or equal to Src2.

3

bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
or equal to 0.

bgt Rsrc1, Src2, label Branch on Greater Than
bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are
greater than Src2.

bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than
0.

ble Rsrc1, Src2, label Branch on Less Than Equal
bleu Rsrc1, Src2, label Branch on LTE Unsigned
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less
than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than or
equal to 0.

blt Rsrc1, Src2, label Branch on Less Than
bltu Rsrc1, Src2, label Branch on Less Than Unsigned
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less
than Src2.

bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrc1, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are not
equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to
0.

4

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to the instruction at the label or whose address is in register Rsrc.
Save the address of the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

4 Compiling HLL Control Structures

Write MIPS code fragments corresponding to the following:

1. Compiling an if:

Next instruction

Else block

If block

Branch to EndIf label

!Condition to Else label
Conditional branch on

Else:

EndIf: Next instruction

If block

Condition

Else block

HLL Code Assembly Code

if (i < 12)

++i;

else

--j;

5

2. Compiling a loop:

Next instruction

Conditional branch onCondition

HLL Code Assembly Code

Loop
block

!Condition to EndLoop label

Loop
block

EndLoop: Next instruction

BeginLoop:

Branch to BeginLoop label

i = 1;

j = 0;

while (i < 200)

{

j += i;

i *= i;

}

5 Class Teamwork Assignment

Working in groups of 2–3, solve as many of the following as possible. Turn in your solutions.

1. j = 0;

for (i = 0; i < 10; ++i)

j += i;

2. j = 0;

for (i = 0; i < 10; ++i)

if (i > 5)

j += i;

3. while (i > 0 && i < 10)

++i;

4. if (i < 12 && j > 3 || k != 0)

++i;

6

else if (i == 33)

--j;

else

k += 2;

5. (3.9 from the text) The naive way of compiling

while (save[i] == k)

i += k;

requires execution of both a conditional branch and an unconditional jump each time
through the loop. Produce the naive code.

Optimize the naive code so that only a conditional branch is executed each time through
the loop.

6. (3.24 from the text, a variation) Write a code segment which takes two “parameters:”

(a) An ASCII character in $a0.

(b) A pointer to a NULL-terminated string in $a1.

and “returns” a count of the number of occurrences of the character in the string in
$v0.

7

