
MIPS Assembly Language I

Tom Kelliher, CS 220

Dec. 1, 2003

1 Administrivia

Announcements

Assignment

From Last Time

Outline

1. Arithmetic and logical instructions.

2. Instruction operands.

3. Instruction formats.

Coming Up

Conditional execution.

2 Arithmetic and Logical Instructions

• add, sub, addi, addu, subu.

1

• and, or, andi, ori, sll, srl.

2.1 Instruction Semantics

add a, b, c # This, BTW, is a comment.

sub a, a, b

addi a, a, 100

and a, b, c

andi a, a, 32000

De-compile each of the following:

add a, b, c

add a, a, d

add a, a, e

De-compile further into a single HLL statement.

Compile each of the following:

a = b + c;

d = a - e;

f = (g + h) - (i + j);

Operands are registers.

3 Instruction Operands

Properties of registers:

1. Number of registers. 32 for MIPS, including the hardwired register. Two ways of
naming: numbers, convention “nicknames”.

2. Number of bits/register. 32. Word size.

Implications: size of address space, datapath width.

2

3.1 Using MIPS Registers

Recall:

f = (g + h) - (i + j);

Assume f through j are in $1 through $5, respectively. Compile the statement.

3.2 Memory Addressing

1. HLL have complex data structures such as arrays and structs. How are they handled?

2. Data transfer instructions: load, store. operands: memory address, register.

3. Actual MIPS instructions: lw, sw.

Base and offset addressing: lw $s0, 8($s1)

4. MIPS memory is byte addressable, so word addresses differ by 4:

msB

Byte AddressWord Address

0

4

8

12

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

lsB

Compile the following:

g = h + A[8];

where g is in $s1, h is in $s2, and the base address of A, an array of 100 words, is in $s3.

Base, offset addressing.

Compile each of the following:

3

A[12] = h + A[8];

A[j] = h + A[i];

Base, offset addressing, using constant offsets, is similarly useful for accessing members of
structures.

4 Instruction Formats

4.1 MIPS R-Format

Example instruction: add $s2, $s0, $s1

26

Op Rs Rt Rd Shamt Func

6 5 5 5 5 6

6111621

Fields:

1. Op: Opcode.

2. Rs: First source operand.

3. Rt: Second source operand.

4. Rd: Destination operand.

5. Shamt: Shift amount — ignore for now.

6. Func: Function. Further specification of the opcode.

In assembly: Op/Func Rd, Rs, Rt

Notes:

4

1. Example encodings:

Assembly Op Rs Rt Rd Shamt Func

add $1, $2, $3 0 2 3 1 0 32
sub $4, $5, $6 0 5 6 4 0 34

4.2 MIPS I-Format

Example instruction: lw $s0 8($s1)

26

Op Rs Rt Immediate

166 5 5

01621

Fields:

1. Op: Opcode.

2. Rs: Source register.

3. Rt: Destination register.

4. Address: 16-bit signed immediate value.

Offset range?

In assembly: Op/Func Rt, address(Rs)

Notes:

1. This format also used for immediate operands: addi $1, $2, 123.

2. Example encodings:

Assembly Op Rs Rt Address

lw $1, 1000($2) 35 2 1 1000
sw $3, -12($4) 43 4 3 -12

5

