Flip-Flops

Tom Kelliher, CS 220

Oct. 24,2001

1 Administrivia

Announcements

Sign up sheets available for green and yellow in X Lab for Thursday and Friday.

Practice session for ACM programming contest this Saturday at 10:00 AM in X Lab.

Assignment

Read 4-4.

From Last Time

Sequential circuits and latches.

Outline

1. The problem with latches, again. Review of clocked SR latch.
2. Analysis of master-slave JK flip-flop.
3. Analysis of edge-triggered D flip-flop.
4. Characteristic tables.

Coming Up

Sequential circuit analysis.

2 Problems with Latches

1. Level sensitivity, transparency.

Must use two-phase, etc. clocking.
2. Solution: Flip-Flops, which remove transparency and permit use of a single clock signal

Clocked SR latch:

Analyze Q, !Q with these input waveforms. Assume Q low initially.

3 JK Flip-Flop

Master-Slave device: ensures no transparency. While master (leading latch) is transparent, slave is latched and vice-versa.

When J and K are both high, toggles in a controlled manner.

Diagram:

Analyze P, !P, Q, and !Q with these input waveforms. Assume Q low initially.

Changes state on edge, but not edge-triggered: one's catching.

4 D Flip-Flop

Edge-triggered: samples input only during a clock transition.

Rising edge triggered D flip-flop. Figure 4-13 uses eight NAND gates and three inverters (verify for yourself). A slight improvement:

Analyze Q, !Q, !R, !S, T, and U with these input waveforms. Assume Q low initially.

Any one's catching?

5 Characteristic Tables

Compact way of representing flip-flop behavior.

1. JK flip-flop:

\mathbf{J}	\mathbf{K}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	Operation
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q(t)}$	Complement

Clock edge is implied in the transition from t to $t+1$.
2. D flip-flop:

\mathbf{D}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	Operation
0	0	Reset
1	1	Set

Always loads. To control loading, use this circuit:

Gating the clock signal leads to problems.

