
Prolog Lists: Work with your partner(s) to understand and write Prolog relations which manipulate lists.

Follow the instructions:

1. Login to phoenix. Download the ch7_1.pl file from goucherLearn. This file contains a

relation blockList which tests for a legal list of blocks. Lists can be written in different ways.

Test each of the following to see if it is a legal list of blocks and explain each result.

a. blockList([]).

b. blockList([b2]).

c. blockList([1,2,3]).

d. blockList([b2,b3,b1]).

e. blockList([b2|[b3,b1]]).

f. blockList([b2,b3|b1]).

g. blockList([b2,b3 | [b1]]).

h. blockList([b2,b3 | []]).

2. The member relation tests if a particular value is contained within a list. It sure makes

writing the relation uniq_blocks so much easier than what we were doing before and it

works with any number of blocks! Do you understand how uniq_blocks works? Try it out.

3. Download the ch7_2.pl file from goucherLearn. This file contains a list version of the

blocks world on p66 of your text. Each stack is now represented as a list of blocks. Then we

have a list of stacks. This is defined in the relation scene.

The before relation uses the relation append(A,B,C) which determines if lists A and B glued

together comprise list C.

before(X,Y,L) :- append(Z,[Y|_],L) and append(_,[X|_],Z).

Give a value for Z which would make the relation before(1,2,[3,1,4,5,2,6]) hold.

4. The left relation uses before and member to determine whether one block appears to left of

another in the scene. Give values of Stack1 and Stack2 which make the relation left(b1,b5)

hold.

5. Write the relation just_before(X,Y,L) as described on p151, exercise #4.

6. Write the relation on(X,Y) as described on p151, exercise #5.

7. Write the relation intersect(X,Y) as described on p151, exercise#6d.

