
CS224 – Lab 1

Purpose: We will look at programming language features that are common in functional
languages and in Haskell in particular. All functional languages allow functions to return
other functions as values, and allow functions to be passed in as parameters. Additionally,
we can use partial application of the parameters of a function, which results in a new func-
tion.
Haskell also uses lazy rather than eager evaluation of expressions, and we will see that this
gives us the benefit of ”infinite” data structures.

Knowledge: This lab will help you become familiar with the following content knowledge:

• How to use partial application due to currying

• How to write higher-order functions

• How to use list comprehensions

• How to use lazy evaluation to write infinite data structures

Task: Follow the steps in this lab carefully to complete the assignments. Copy the lab1
folder from my account by using the command:

cp -r ~jillz/cs224/lab1 .

Note: The period at the end of the command indicates that the destination for the copy
command is the current directory.

Take a look at the function plus in the file Example1.hs file. We will now consider why
the type for a function like plus listed below is Int -> Int -> Int rather than something
like (Int,Int) ->Int.

plus :: Int -> Int -> Int

plus x y = x + y

Well the expression plus 3 4 is really equivalent to ((plus 3) 4). This means that the
result of (plus 3) is applied to the argument 4. It must be the case the value (plus 3) is
a function!
indeed, we could define a new function to be the result of plus 3 as follows:

plusThree :: Int -> Int

plusThree = plus 3

Verifiy that you get the result you expect from the expression plusThree 4.

This method of applying functions to one argument at a time is called currying (after
Haskell B. Curry). Curried functions can be applied to one argument only, giving another
function. Sometimes these new functions can be useful in their own right. Consider the
following function:

1



twice :: (Int -> Int) -> Int -> Int

twice f x = f (f x)

The function twice takes as arguments a function and an integer and applies the function
twice to the integer argument. We could use the function resulting in using only the first
argument to get the following new functions:

add2 = twice (+1)

quad = twice square

What would be the result of the expressions add2 3 and quad 2 ? Try them out.

The function twice is an example of a higher-order function. Higher-order functions take
functions as parameters and can also return functions. You should already be familiar with
the higher-order functions map and filter. The function map takes a function and a list
and applies the function to every item in the list. The function filter takes a predicate
and a list and returns a list of all the items that satisfy the predicate.

We can use filter to define the function quickSort to sort a list. The idea behind quick-
Sort is to pick an element x in the list and divide the list into three parts, all the items less
than x, all the items equal to x, and all the items greater than x. We recursively sort the
first and third parts and concatenate them all together.

quickSort :: Ord a => [a] -> [a]

quickSort [] = []

quickSort (x : xs) = (quickSort less) ++ (x : equal) ++ (quickSort more) where

less = filter (< x) xs

equal = filter (== x) xs

more = filter (> x) xs

We can define

dictionary = ["I", "have", "a", "thing", "for", "Haskell"]

What happens when we sort this list with quickSort? The reason is that the typical or-
dering of characters specifies that upper case characters are ”less than” lower case characters.

To make things more flexible we will redefine quickSort to take an extra argument which
will be a comparison function that compares two values ans returns values LT, EQ, and GT
(representing ”less than”, ”equal” and ”greater than”).

quickSort’ :: (a -> a -> Ordering) -> [a] -> [a]

quickSort’ _ [] = []

quickSort’ c (x : xs) = (quickSort’ c less) ++ (x : equal) ++ (quickSort’ c more) where

less = filter (\y-> y ‘c‘ x == LT) xs

equal = filter (\y -> y ‘c‘ x == EQ) xs

more = filter (\y -> y ‘c‘ x == GT) xs

There is a standard Haskell function compare which is the usual comparison function. Try
it out with

2



quickSort’ compare dictionary

Now we can write other comparison functions. For example,

descending x y = compare y x

We can use partial application due to currying to define a new function:

sortDescending :: Ord a => [a] -> [a]

sortDescending = quickSort’ descending

Try it out.

Assignment 1:
Write a comparison function insensitive which compares Strings but is case-insensitive.
You will want to use map and the function toLower.

Criteria for Success: Your function should work as follows:

> quickSort’ insensitive dictionary

["a","for","Haskell","have","I","thing"]

Another very useful higher-order function which is already in the standard library is zipWith
that takes a function and two lists as parameters and then joins the two lists by applying
the function.

For example,

> zipWith (+) [4,2,5,6] [2,6,2,3]

[6,8,7,9]

> zipWith max [6,3,2,1] [7,3,1,5]

[7,3,2,5]

Assignment 2:
I have hidden zipWith inside the Example1 module. Define this function yourself.

zipWith :: (a -> b-> c) -> [a] -> [b] -> [c]

Criteria for Success: Your function should behave identically as the standard li-
brary function as shown in the previous examples.

3



Haskell contains a shorthand for filtering a list called a list comprehension. This shorthand
looks very much like set notation. For example, consider the following which computes the
list of even numbers from 0 to 100 by using a filter.

s1 = filter (\x-> x ‘mod‘ 2 == 0) [0..100]

We can perform the exact same computation this way:

s2 = [x | x<-[0..100], x ‘mod‘ 2 == 0]

Assignment 3:
Write a function factors n which computes a list of all the factors of n.
Hint: The factors of n are all between 1 and n ‘div‘ 2 and of course evenly divide n.

factors :: Integer -> [Integer]

Criteria for Success: The factors of 12 should give [1,2,3,4,6] and the factors of
15 are [1,3,5].

We will experiment a bit with lazy evaluation. First consider the function f defined in
Example2. This function has an argument x which is never used in the body of the function.
Try evaluating:

f (1/0)

If the language was strict (uses eager evaluation) what result would you expect?

Lazy evaluation gives us the benefit of allowing ”infinite” data structures. Look at the
definition of intsFrom. This recursion is infinite, yet the following expression which takes
the first 10 items from this list will halt, due to lazy evaluation. Only the portion of the list
that is used will be computed. Try it out.

take 10 (intsFrom 1)

Look at the definitions of fibs and primes and see if you can figure out how they work.
They both give an infinite list!

Assignment 4:
Write the definition of the infinite list that computes all the powers of 2.
I did this function using multiplication and map since each successive value in the list
is two times the value of the previous one.

Criteria for Success: Your function should take no parameters and should return
the infinite list. You can test your result by using the take function.

4



Assignment 5:
Using the data type Tree, write a function infTree which creates an infinite tree where
all the nodes contain the value given by the parameter.

infTree :: a -> Tree a

Criteria for Success: Wait for the next assignment to test out your tree.

Assignment 6:
Write the function takeTree which returns n levels of a Tree. Then use this function
to print out a portion of an infTree.

takeTree :: Integer -> Tree a -> Tree a

Criteria for Success: You print out the appropriate number of levels of your infTree.

Submit your files in Canvas for grading.

5


