
Slide 1/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

This program is part of the software suite
that accompanies the book

The Elements of Computing Systems
by Noam Nisan and Shimon Schocken

MIT Press

www.nand2tetris.org

This software was developed by students at the
Efi Arazi School of Computer Science at IDC

Chief Software Architects: Yaron Ukrainitz and Yannai Gonczarowski

VM Emulator Tutorial

Slide 2/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Background

The Elements of Computing Systems evolves around
the construction of a complete computer system,
done in the framework of a 1- or 2-semester course.

In the first part of the book/course, we build the
hardware platform of a simple yet powerful
computer, called Hack. In the second part, we build
the computer’s software hierarchy, consisting of an
assembler, a virtual machine, a simple Java-like
language called Jack, a compiler for it, and a mini
operating system, written in Jack.

The book/course is completely self-contained,
requiring only programming as a pre-requisite.

The book’s web site includes some 200 test
programs, test scripts, and all the software
tools necessary for doing all the projects.

Slide 3/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Translators (Assembler, JackCompiler):

� Used to translate from high-level to low-level;

� Developed by the students, using the book’s
specs; Executable solutions supplied by us.

Other

� Bin: simulators and translators software;

� builtIn: executable versions of all the logic
gates and chips mentioned in the book;

� OS: executable version of the Jack OS;

� TextComparer: a text comparison utility.

(All the supplied tools are dual-platform: Xxx.bat starts
Xxx in Windows, and Xxx.sh starts it in Unix)

Simulators
(HardwareSimulator, CPUEmulator, VMEmulator):

� Used to build hardware platforms and
execute programs;

� Supplied by us.

The Book’s Software Suite

This tutorial is
about the

VM emulator

Slide 4/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

VM Emulator Tutorial

Relevant reading (from The Elements of Computing Systems):

� Chapter 7: Virtual Machine I: Stack Arithmetic

� Chapter 8: Virtual Machine II: Program Control

� Appendix B: Test Scripting Language, Section 4.

I. Getting Started

II. Using Scripts

III. Debugging

Slide 5/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Part I:

Getting Started

VM Emulator Tutorial

Slide 6/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

The Typical Origin of VM Programs

� VM programs are normally
written by compilers

� For example, the Jack
compiler (chapters 10-11)
generates VM programs

� The VM program can be
translated further into
machine language, and
then executed on a host
computer

� Alternatively, the same VM
program can be emulated
as-is on a VM emulator.

Altrenative VM
Implementations

Jack
Compiler

Prog.jack

Prog.vm

Assembler

Prog.asm

VM
Emulator

VM
Translator

Prog.hack

(High level
language)

(Binary code)

Supplied
by us

Built in
projects
7 and 8

Slide 7/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Example: Pong game (user view)

Now let’s go behind the scene ...

Ball moves and
bounces off the
walls “randomly”

User move the bat
left and right,
trying to hit the
ball

Number of
successful
hits

Slide 8/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

VM Emulator at a Glance

VM program
(In this
example:
Pong code
+ OS code)

Screen:

(In this example:
Pong game action)

Virtual
memory
segments Keyboard

enabler

Working stack:

Topmost part of the
global stack, as seen
by the VM program

Call stack:

Hierarchy of all the
functions that are
currently running

Host RAM:
Stores the global
stack, heap, etc.

The VM emulator serves three purposes:

� Running programs

� Debugging programs

� Visualizing the VM’s anatomy

The emulator’s GUI is rather crowded, but each
GUI element has an important debugging role.

Global stack:
Function frames
+ working stack

Not Part of the VM!
(displayed in the VM emulator

for reference purposes)

Slide 9/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Loading a VM Program

� Let’s start with a trivial VM program that
manipulates only the stack (i.e. does not
involve the memory segments Static,
Local, Argument, etc.);

� VM programs that don’t manipulate
memory segments can be loaded via the
“load file” button.

Navigate to a
directory and
select a .vm file

Slide 10/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

VM code is loaded: (read-only)

The index on the left is the
location of the VM command
within the VM code (a GUI
effect, not part of the code).

Running a Program

Default test script

Always loaded, unless
another script is loaded
by the user.

Script controls

Slide 11/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Impact of first
13 “vmsteps”

Running a Program

Slide 12/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Loading a Multi-File Program

� Most VM programs, like Pong, consist of more than one .vm
file. For example, the Jack compiler generates one .vm file
for each .jack class file, and then there are all the .vm fies
comprising the operating system. All these files must reside
in the same directory.

� Therefore, when loading a multi-file VM program into the VM
emulator, one must load the entire directory.

Won’t work!

Why? Because Pong is a
multi-file program, and ALL
these files must be loaded.
Solution: navigate back to the
directory level, and load it.

Slide 13/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Loading a Multi-File Program

Slide 14/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Part II:

Virtual Memory
Segments

VM Emulator Tutorial

Slide 15/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Virtual Memory Segments

A technical point to keep in mind:

� Most VM programs include pop and
push commands that operate on
Static, Local, Argument, etc.;

� In order for such programs to operate
properly, VM implementations must
initialize the memory segments’ bases,
e.g. anchor them in selected addresses in
the host RAM;

� Case 1: the loaded code includes function
calling commands. In this case, the VM
implementation takes care of the required
segment initializations in run-time, since
this task is part of the VM function call-
and-return protocol;

� Case 2: the loaded code includes no
function calling commands. In this case,
the common practice is to load the code
through a test script that handles the
necessary initialization externally.

Memory segments:

� The VM emulator
displays the states
of 6 of the 8 VM’s
memory segments;

� The Constant and
Pointer segments
are not displayed.

Slide 16/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Part II:

Using Scripts

VM Emulator Tutorial

Slide 17/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Typical VM Script

load BasicTest.vm,
output-file BasicTest.out,
compare-to BasicTest.cmp,
output-list RAM[256]%D1.6.1

RAM[300]%D1.6.1 RAM[401]%D1.6.1
RAM[402]%D1.6.1 RAM[3006]%D1.6.1
RAM[3012]%D1.6.1
RAM[3015]%D1.6.1 RAM[11]%D1.6.1;

set sp 256,
set local 300,
set argument 400,
set this 3000,
set that 3010;

repeat 25 {
vmstep,
output;

}

load BasicTest.vm,
output-file BasicTest.out,
compare-to BasicTest.cmp,
output-list RAM[256]%D1.6.1

RAM[300]%D1.6.1 RAM[401]%D1.6.1
RAM[402]%D1.6.1 RAM[3006]%D1.6.1
RAM[3012]%D1.6.1
RAM[3015]%D1.6.1 RAM[11]%D1.6.1;

set sp 256,
set local 300,
set argument 400,
set this 3000,
set that 3010;

repeat 25 {
vmstep,
output;

}

Simulation step
(a series of script

commands
ending with a

semicolon)

Next
simulation

step

Repeated
simulation

step

Typical “script setup”
commands

Typical memory
segments initialization
commands

Typical execution loop

Slide 18/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Loading a Script

Navigate to a
directory and select
a .tst file.

Slide 19/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Script Controls

Execute the next
simulation step

Execute step after
step repeatedly

Pause the
simulation

Reset
the script

Script = a series of
simulation steps, each
ending with a semicolon;

Execution
speed
control

Slide 20/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Loads a VM program
into the emulator

Running the Script

Slide 21/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

VM code
is loaded

Running the Script

Slide 22/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

A loop that
executes the
loaded VM
program

Running the Script
(click a few times)

The memory segments
were initialized (their
base addresses were
anchored to the RAM
locations specified by
the script).

Slide 23/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Impact after
first 10
commands
are executed

Running the Script

Slide 24/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Part III:

Debugging

VM Emulator Tutorial

Slide 25/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

View Options

View options:
� Script: displays the loaded script;

� Output: displays the generated output file;

� Compare: displays the given comparison file;

� Screen: displays the simulated screen.

When the script terminates, the
comparison of the script output
and the compare file is reported.

Slide 26/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Animation Options

Animation control:
� Program flow (default): highlights the next

VM command to be executed;
� Program & data flow: highlights the next

VM command and animates data flow;
� No animation: disables all animation

Usage tip: To execute any non-trivial program
quickly, select no animation.

Speed control

(of both execution
and animation)

data flow animation related to
the last VM command (in this
example: push argument 0)

source
transit

destn.

Slide 27/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Breakpoints: a Powerful Debugging Tool

The VM emulator keeps track of the following variables:

� segment[i]: Where segment is either local, argument, this, that, or temp

� local, argument, this, that: Base addresses of these segments in the host RAM

� RAM[i]: Value of this memory location in the host RAM

� sp: Stack pointer

� currentFunction: Full name (inc. fileName) of the currently executing VM function

� line: Line number of the currently executing VM command

Breakpoints:

� A breakpoint is a pair <variable, value> where variable is one of the labels listed above
(e.g. local[5], argument, line, etc.) and value is a valid value

� Breakpoints can be declared either interactively, or via script commands

� For each declared breakpoint, when the variable reaches the value, the emulator
pauses the program’s execution with a proper message.

Slide 28/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Setting Breakpoints

1. Open the
breakpoint
panel

2. Previously-
declared
breakpoints

3. Add, delete,
or update
breakpoints

4. Select the variable
on whose value you
wish to break

5. Enter the value
at which the break
should occurA simple VM program:

Sys.init calls
Main.main, that calls
Main.add (header not
seen because of the
scroll), that does some
simple stack arithmetic.

By convention, function
headers are colored violet

Here the violet coloring is
overridden by the yellow
“next command” highlight.

Slide 29/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Setting Breakpoints

Breakpoints logic:
When local[1] will
become 8, or when sp
will reach 271, or when
the command in line 13
will be reached, or when
execution will reach the
Main.add function, the
emulator will pause the
program’s execution.

Slide 30/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Breakpoints in Action

Execution reached the
Main.add function, an
event that triggers a
display of the breakpoint
and execution pause.

Slide 31/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Breakpoints in Action

Following some push
and pop commands,
the stack pointer (sp)
became 271, an event
that triggers a display
of the breakpoint and
execution pause.

Slide 32/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Breakpoints in Action

Following some more execution,
the second local variable
(local[1]) became 8, an event
that triggers a display of the
breakpoint and execution pause.

A powerful
debugging tool!

Slide 33/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

Breakpoints in Scripts

load myProg.vm,
output-file myProg.out,
output-list sp%D2.4.2

CurrentFunction%S1.15.1
Argument[0]%D3.6.3
RAM[256]%D2.6.2;

breakpoint currentFunction Sys.init,

set RAM[256] 15,
set sp 257;

repeat 3 {
vmStep,

}
output;

while sp < 260 {
vmstep;

}
output;

clear-breakpoints;

// Etc.

load myProg.vm,
output-file myProg.out,
output-list sp%D2.4.2

CurrentFunction%S1.15.1
Argument[0]%D3.6.3
RAM[256]%D2.6.2;

breakpoint currentFunction Sys.init,

set RAM[256] 15,
set sp 257;

repeat 3 {
vmStep,

}
output;

while sp < 260 {
vmstep;

}
output;

clear-breakpoints;

// Etc.

� For systematic and replicable
debugging, use scripts

� The first script commands usually
load the .vm program and set up
for the simulation

� The rest of the script may use
various debugging-oriented
commands:

• Write variable values (output)

• Repeated execution (while)

• Set/clear Breakpoints

• Etc. (see Appendix B.)

Slide 34/34VM Emulator Tutorial, www.nand2tetris.org Tutorial Index

End-note on Creating Virtual Worlds

“It’s like building something
where you don’t have to order
the cement. You can create a
world of your own, your own
environment, and never leave
this room.”

(Ken Thompson,
1983 Turing Award lecture)

