CS220 — Project 4: Machine Language Programming

Background

Each hardware platform is designed to execute a certain machine language, expressed using
agreed-upon binary codes. Writing programs directly in binary code is a possible, yet an
unnecessary, tedium. Instead, we can write such programs in a low-level symbolic language,
called assembly, and have them translated into binary code by a program called an assembler.
In this project you will write some low-level assembly programs, and will be forever thankful
for high-level languages like C and Java. (Actually, assembly programming can be a lot of
fun, if you are in the right mood; it’s an excellent brain teaser, and it allows you to control
the underlying machine directly and completely.)

Objective

To get a taste of low-level programming in machine language, and to get acquainted with the
Hack computer platform. In the process of working on this project, you will become familiar
with the assembly process — translating from symbolic language to machine-language —
and you will appreciate visually how native binary code executes on the target hardware
platform. These lessons will be learned in the context of writing and testing the two low-level
programs described below.

Programs

Program Description Comments / Tests

For the purpose of this program, we assume that
RO>=0, R1>=0, and RO*R1<32768 (you are welcome

Multiplication: In the Hack framework, the to ponder where this value comes from). Your program

top 16 RAM words (R2M([0] ... REM[15])
are also referred to as the so-called virtual
registers g0 ... R15. With this terminology
in mind, this program computes the value
E0*E1 and stores the result in r2.

Mult.asm

need not test these conditions, but rather assume that
they hold. To test your program, put some values in
RAM[O] and RAM[1], run the code, and inspect RAM[Z].
The supplied 1ult.tst scriptand Mult. cmp
compare file are deigned to test your program
“officially”, running it on several representative values
supplied by us.

I/0 handling: This program illustrates
low-level handling of the screen and
keyboard devices. In particulate, the
program runs an infinite loop that listens to
the keyboard input. When a key is pressed
(any key), the program blackens the screen,
1.e. writes "black” in every pixel. When no
key is pressed, the program clears the
screen, 1.e. writes "white” in every pixel.

Fill.asm

You may choose to write code that blackens and clears
the screen's pixels in any spatial/visual order, as long as
pressing a key continuously for long enough will result
in a fully blackened screen, and not pressing any key for
long enough will result in a fully cleared screen. We
provide a test script (Fill.t=t), but no compare
file. The program should be checked visually by
inspecting the simulated screen of the supplied CPU
Emulator.

Mult Pseudo-Code

See pp. 249-250 of the textbook for a binary multiplication example. In the example on
pg. 250, x is the multiplicand and y is the multiplier.

// Multiplicand and multiplier are pre-loaded into RO and R1,
// respectively.
mask = 1; // mask is used to isolate a single bit of the
// multiplier.
i=0;
R2 = 0; // Product accumulated into R2

while (i < 16)
{
// Isolate current multiplier bit; accumulate shifted multiplicand
// in RO into R2 if this bit is set.
if ((mask & R1) !'= 0)
R2 = R2 + RO;

// Shift intuition: adding a number to itself is equivalent to
// multiplying it by 2: x + x = 2x. In binary, multiplying a
// value by two results in all of the bits of the value being
// shifted left one bit position, with a O being shifted into
// the 1lsb position and the msb being lost.

RO = RO + RO; // Shift multiplicand left one bit position.
i=1i+ 1;
mask = mask + mask; // Shift mask left one bit position.

Fill Pseudo-Code

sptr = SCREEN; // Memory pointer to next screen memory location
// to be filled with black or white pixels.

clear = -1; // This is for the 10 "smooth user experience" points.
// See implementation tip in Proposed Implementation
// Section below. "-1" is true in Hack; "O" is false.
while (1)
{
if (*KBD != 0) // Read the keyboard location’s value. if
{ // '0, fill with black pixels.
if (clear != 0) // For "smooth user experience."
{

clear = false;
sptr = SCREEN;

b
xsptr = -1; // Write 16 black pixels to the screen memory location
// pointed to by sptr.
3
else // Fill with white pixels.
{
if (clear == 0) // For "smooth user experience."
{
clear = true;
sptr = SCREEN;
Iy
xsptr = 0; // Write 16 white pixels to the screen memory location
// pointed to by sptr.
3

sptr = sptr + 1; // Increment sptr to point to next location
// in screen memory.

// If we’ve reached the end of screen memory, start over.
if (sptr >= SCREEN + 8192)
sptr = SCREEN;

Proposed Implementation

1. Use a plain text editor to write the first assembly program. You can do it by loading
and editing the supplied mult/Mult.asmn file.

2. Use the supplied Assembler (in either batch or interactive mode) to translate your

program. If you get syntax errors, go to step 1. If there are no syntax errors, the
assembler will produce a file called mult/Mult.hack, containing binary instructions
written in the Hack machine language.

3. Use the supplied CPU Emulator to load, and then test, the translated Mult .hack code.
This can be done either interactively, or batch-style using the supplied Mult. tst script.
If you get run-time errors, go to step 1.

4. Repeat steps 1-3 for the second program (Fill.asm), working in the £ill directory.
Implementation tip: If you're struggling with the Fill.asm program’s “smooth user
experience” logic, implement it first without this logic and get that working. Then,
work on adding this logic. At the worst, you’ll lose 5% for not having this logic
working.

Debugging tip: The Hack language is case-sensitive. A common error occurs when one
writes, say, @foo and @Foo in different parts of the program, thinking that both labels are
treated as the same symbol. In fact, the assembler treats them as two different symbols.
This is a nasty, difficult-to-detect bug.

Criteria for Success

Write and test the two programs described above. When executed on the CPU Emulator,
your programs should generate the results mandated by the specified tests.

Resources

The Hack assembly language is described in detail in Chapter 4. You will need two tools:
the supplied Assembler — a program that translates programs written in the Hack assembly
language into binary Hack code, and the supplied CPU Emulator — a program that runs
binary Hack code on a simulated Hack platform. Two other related and useful resources
are the supplied Assembler Tutorial and the CPU Emulator Tutorial. We recommend going
through these tutorials before starting to work on this project. The project files are available
in a ZIP archive file available on the course web site.

Tools

The supplied Hack Assembler can be used in either command mode (from the command
shell) or interactively. The latter mode of operation allows observing the translation process
in a visual and step-wise fashion, as shown below:

Assembler - G\ examples’ SumTol00.asm
He En tep

=lolx|

o COBPUTES NTHad+ o100
@
H=1 wecount=l
@ o ellocated at RANUA
Haty
(LOOR)
@
D=H
[t

D=l-A & 1T count=l0n

D JGT 47 goto end
@

D=l

@

H=D:H & sum=susscount

Halled s/ COUMT=COUNT+L ®
(@LO0P
o IHE

(ENL) » intindte loop

Controls: the "disk” button can be used to save the
| translated binary code in a .hack file

a@>>ugl=.

Destination

ORI 1
(104001212 100000
M0 R

140102 000000

EO000I00000D00 1
11111 3000000000

NA00300

‘ |

18200 1008 1008000
COOIGAONM0LH0 10
1110062 100000001

RLE it H

15311 200000 0000
RO 0
114 300002 0001000

GUI area reserved for
the "compare file” option.

(Not needed in this project.)

(@END
o THF
source translated
program, program,
in assembly in binary
1| | 1] |
[File compilation succeeded

The machine language programs produced by the assembler can be tested using the
supplied CPU Emulator. This CPU Emulator includes a ROM (also called Instruction
Memory) representation, into which the binary code is loaded, and a RAM representation,
which holds data. For ease of use, the emulator enables the user to view the loaded ROM-
resident code in either binary mode, or in symbolic / assembly mode. In fact, the CPU
Emulator even allows loading a program written in assembly directly into the ROM, in which
case the program is translated into binary code on the fly. This utility seems to render the
supplied assembler unnecessary, but this is not the case. First, the supplied assembler shows
the translation process visually, for instructive purposes. Second, the assembler generates a
persistent binary file. This file can be executed either on the CPU Emulator, as we illustrate
below, or directly on the hardware platform, as we’ll do in the next project.

CPU Emadator (1.4b3) - G:\examples'|Rect.asm - 173 .u.lﬂlzl'
Fle Yew Run Hep

Animate: Format:
BOPREBY LR
controls

RAM) 88
H 16370 oal
I 16371 0
mﬂ. |
. : program's 256 by 512
instruction output pixels
memory Hg data simulated
W memory screen
ﬁ: | keyboard
e ol enabler
16351 o
pLy o
14283 &
EH
s |) | |
1akb | &
i ORI i oiced T
e, 8y He Edt Fomat Yew Heb
m : // Draws a_rectangle 16 pixels wide and RaM[0] =]
premy ol // pixels long at top left corner of the screen
Py 5l if lef ?]<=0 goto end
: 1 n=RAM
ﬁ : screen=16384 // screen base (top left)
B ol Toop: // draw 16 pixels at the screen location
e RAM[screen]=-1 // =1=11...1 in binary
e T scre§n=screena-32 // proceed to next row
- R n=n-
Sl 7 -
A [o end: =

| | bz

Submission and Assessment

If you can’t finish the project on time, submit what you've managed to do, and relax. All
the projects in this course are highly modular, with incremental test files. Each hardware
project consists of many chip modules (*.hdl programs), and each software project consists
of many software modules (classes and methods). It is best to treat each project as a
modular problem set, and try to work out as many problems as you can. You will get
partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in
whatever you did, and explain what works and what doesn’t in a README file. If you want,
you can also supply test files that you developed, to demonstrate working and non-working
parts of your project. Instead of trying to hide the problem, be explicit and clear about it.
You will get partial credit for your work.

Submit all your ASM files as a single ZIP archive.

