
CS220 – Project 3: Sequential Chips

Background

The computer’s main memory, also called Random Access Memory, or RAM, is an address-
able sequence of n-bit registers, each designed to hold an n-bit value. In this project you
will gradually build a RAM unit. This involves two main issues: (i) how to use gate logic
to store bits persistently, over time, and (ii) how to use gate logic to locate (“address”) the
memory register on which we wish to operate.

Objective

Build all the chips described in Chapter 3 (see list below), leading up to a Random Access
Memory (RAM) unit. The only building blocks that you can use are primitive DFF gates,
chips that you will build on top of them, and chips described in previous chapters.

Chips

Criteria for Success

When loaded into the supplied Hardware Simulator, your chip design (modified .hdl pro-
gram), tested on the supplied .tst script, should produce the outputs listed in the supplied
.cmp file. If that is not the case, the simulator will let you know.

Resources

The relevant reading for this project is Chapter 3 and Appendix A. Specifically, all the
chips described in Chapter 3 should be implemented in the Hardware Description Language

1



(HDL) specified in Appendix A.
For each chip, we supply a skeletal .hdl file with a missing implementation part. In

addition, for each chip we supply a .tst script that instructs the hardware simulator how
to test it, and a .cmp (“compare file”) containing the correct output that this test should
generate. Your job is to complete and test the supplied skeletal .hdl files.

The resources that you need for this project are the supplied Hardware Simulator and
the files listed above. The project directory and files may be found in a ZIP file on the
course web site. The project directory is further partitioned into two sub-directories, for
reasons described below.

Tips

The Data Flip-Flop (DFF) gate is considered primitive and thus there is no need to build
it: when the simulator encounters a DFF chip part in an HDL program, it automatically
invokes the built-in implementation.

Built-in chips: When constructing RAM chips from lower-level RAM chip-parts, we
recommend using built-in versions of the latter. Otherwise, the simulator will recursively
generate numerous memory-resident software objects, one for each one of the many chip
parts that make up a typical RAM unit. This may cause the simulator to run slowly, or,
worse, out of memory. i.e. out of the memory of the computer on which the simulator is
running.

To avert this problem, we’ve partitioned the RAM chips that you have to build in this
project into two sub-directories, named a and b. This partition is superficial, and is done
with one purpose only: when building the chips stored in b, the simulator is forced to use
built-in implementations of the lower-level chip parts whose .hdl programs are stored in a

but not in b.

Tools

All the chips mentioned in Projects 1–5 can be implemented and tested using the supplied
Hardware Simulator. Here is a screen shot of testing a built-in RAM8.hdl chip implemen-
tation on the Hardware Simulator:

2



Submission and Assessment

If you can’t finish the project on time, submit what you’ve managed to do, and relax. All
the projects in this course are highly modular, with incremental test files. Each hardware
project consists of many chip modules (*.hdl programs), and each software project consists
of many software modules (classes and methods). It is best to treat each project as a
modular problem set, and try to work out as many problems as you can. You will get
partial credit for partial work.

What if your chip or program is not working? It’s not the end of the world. Hand in
whatever you did, and explain what works and what doesn’t in a README file. If you want,
you can also supply test files that you developed, to demonstrate working and non-working
parts of your project. Instead of trying to hide the problem, be explicit and clear about it.
You will get partial credit for your work.

Submit all your HDL files as a single ZIP archive.

3


