CS205 — Lab 5

Objectives: In this lab you will learn how to

e create multithreaded code

e correct synchronization issues within a multithreaded program with Locks

Before starting this lab, you should have read Chapter 9 in your text.

1. You will start by using multiple threads

(a)

In your pair, download and import the lab5 project into Eclipse. Take a look at
the printPrimes method. What does the method do? (Note: n.isProbablePrime(100)
returns true if n is a prime, with error probability < 27190, Assume for now that
means that n is certainly a prime.)

Take a look at the main method that executes two threads and run this code.
What happens? How can you tell that the two tasks ran concurrently?

Now we want to know how many primes are in a given interval instead of printing
them to System.out. We need to use a Callable since a Runnable can’t return a
value. Make a function countPrimes that returns a Callable<Long>. Make two
callables

Callable<Long> cl = countPrimes(new BigInteger ("1000000000000000"), 500_000) ;
Callable<Long> c2 = countPrimes(new BigInteger ("1000000000500000"), 500_000) ;

Submit them both to the same ExecutorService as in the preceding example.
You'll get two Future<Long> values. You can access these values by

System.out.println(fl.get());
System.out.println(f2.get());

before calling
service.shutdown() ;

Run the program. What does it print? Run it again. Does it print the same
thing? The isProbablePrime method sounds as if it was guessing, but it is actually
perfectly deterministic. For a given n, the call n.isProbablePrime (100) will
always give the same result. It is just that the result may be wrong. The
chance for that is 27190 or about 1073Y. The probability of you being struck
by lightning in a given year is about 1076. The probability of five of us being
struck by lightning in the same year is about 1073°. If that what keeps you up at
night, then you should definitely worry about n.isProbablePrime(100) giving
you the wrong answer.

Let’s find out if running the two tasks in parallel does any good. Add these calls
around the calls to service.submit

long start = System.currentTimeMillis();

long end = System.currentTimeMillis();
System.out.println("Milliseconds: " + (end - start));



Run the program and write down the number of milliseconds. Then change
Executors.newFixedThreadPool(2); to Executors.newFixedThreadPool(1);,
which means that only one thread is available. Run the program again. You
should notice a delay between the printouts of the two counts. Did you get the
same counts in both the faster and the slower run?

2. Now let’s compute the count differently.

(a) We'll increment a shared counter. Add a field
private static long nonprime = 0;

In the countPrimes method, increment nonprime when a number isn’t a prime.
After printing each result, add a call System.out.println(nonprime); Run the
program a few times. What results do you get? Which values are the same, and
which are different in each run?

(b) As you can see, incrementing a counter from two threads doesn’t work reliably —
in other words, it doesn’t work. Use a ReentrantLock to make it work.

(¢) Objects contain their own built-in locks. Make a Counter class with synchronized
methods increment and get. Remove the lock from the previous step and make
nonPrime into an instance of your Counter class. Verify that your program works.

3. The preceding program has two tasks that count primes. Now we want to do some
work with them.

(a) Create a method that places primes into a queue:
public Runnable producePrimes(BigInteger start, long length, BlockingQueue<BigInteger> queue)

You will want to use put, not add for placing items into the queue so that the
thread will wait if the queue is full. Add a method

public Runnable consumePrimes(BlockingQueue<BigInteger> queue);

that removes primes from the queue and prints those that have at most three
distinct digits. You will want to use the method take to remove items from the
queue so that the thread will wait if there are no items to remove. Here is a
method for getting all distinct characters in a string:

private static String distinct(String s)

{
StringBuilder result = new StringBuilder();
int i = 0;
while (i < s.length())

{
int cp = s.codePointAt(i);
int cc = Character.charCount (cp);
if (result.indexOf (s.substring(i, i + cc)) == -1)
result.appendCodePoint (cp) ;
i += cc;
}
return result.toString();



In the main method, make an ArrayBlockingQueue of capacity 1000. Change the
newFixedThreadPool call to have 3 threads. Add the three runnables:

producePrimes(new BigInteger ("1000000000000000"), 500_000, queue);
producePrimes(new BigInteger ("1000000000500000"), 500_000, queue);
consumePrimes (queue, ...);

(b) How does the consumer know when it is done? Come up with some mechanism
that works.

Add Javadoc comments to record the members of your team in the Class file containing
your main() methods and also to document the code that you write for the lab. Export
your lab into a ZIP archive and submit it.



