Lists
The major data type in any functional language is the list. You have already seen a list
in the form of a sentence which is in fact a list of words. A list, however, can contain any

type, not just words. We can even have lists that contain other lists!

Lists are written in square brackets and all elements in the lists must be the same type.
Here are some examples given with their types:

[1,2,3] :: [Int]
[’h’,’e’,?17,°1?,%0°] :: [Char]
(1,21, [3]1] :: [[Intl]
[(+), (x)] :: [Int -> Int -> Int]
A list with no elements is written as [] and is pronounce ”nil”. To add a single element

x to the front of a list xs, we write x : xs. In actuality, the list [1,2,3] is equivalent to
1 : (2 : (3 : [1)). This list could be visualized as:

It is important to understand that a list is not symmetric. It is easy to get the first item in
the list but to get to the last items requires marching through the entire list.

Let’s consider how we can perform so list operations. In doing so the type [a] indicates
a list of any type. List functions are often broken into cases: the empty list [] and the
nonempty list (x:xs). For the nonempty list the value x is the first thing in the list and xs
is everything but the first item. You may find it helpful to use the substitution model on
the functions below to see how they behave:

-- compute the length of a list
len :: [a] -> Int

len [] =0

len (x:xs) = len xs + 1

-- return the nth item in the list (start counting at 0)
nth :: Int -> [a] -> a
nth n (x:xs) = if n==0

then x

else nth (n-1) xs



-- append two lists together
append :: [a] -> [a] -> [a]

append [1 y = y

append (x:xs) y = x : (append xs y)

The operations that can be performed on lists is lengthy and is provided here. Let’s zero in
on just a few of the key operations:

Function | Explanation
head gives the first item in the list
tail gives all but the first item in the list
++ appends two lists together
null tests to see if a list is empty
There are

many higher order function that operate on lists. Here are some that should

seem familiar:

Function | Explanation

map applies a function to every member of the list

filter applies a predicate to a list and keeps only the items satisfying the predicate
foldl combines a list using a combiner function (applied left to right)

foldr combines a list using a combiner function (applied right to left)



https://hackage.haskell.org/package/base-4.2.0.1/docs/Data-List.html

