
Data Types

So far, we have used simple data types like Int and Bool, or data types that I have supplied,
like Language or Image. It is time that we look at how we can define our own more complex
data types.

Suppose we wish to create a data type to represent geometric shapes so that users of these
types can create instances of these shapes and compute their areas. Our first task is to
create a data type to represent different types of shapes, such as a rectangle or an ellipse.

data Shape = Rectangle Side Side |

Ellipse Radius Radius

deriving Show

type Radius = Float

type Side = Float

The data keyword says that we are defining a new data type that can have several options.
We are naming the data type Shape. We now list the options separated by the ”|” character.
Each option is given a name of our choosing, and in this case we decided to name the options
Rectangle and Ellipse. For each of these options we specify the types of the parameters.
For Rectangle the two parameters are floats representing the length of the two sides. We
could have used the code Rectangle Float Float but to make it more readable we instead
define a synonym Side which we specify as a Float using the type keyword. The type

keyword simply allows us to give a data type a second name. We then define the Ellipse

option in a similar way. We are now able to define shapes that are either rectangles or ellipses

We can define a rectangle r1 with one side of length 2.0 and another of length 3.5:

r1 = Rectangle 2.0 3.5

We could define functions for creating squares and circles:

square s = Rectangle s s

circle r = Ellipse r r

We can define an area function which will compute the area for any of our shapes. To do
this we give the definition for each of the possible options:

area :: Shape -> Float

area (Rectangle s1 s2) = s1 * s2

area (Ellipse r1 r2) = pi * r1 * r2

1



We can now apply the area function to any of our previously defined shapes:

area r1

Haskell uses a built-in pattern matching mechanism on the argument of the function to
check whether it is either a rectangle or an ellipse in order to use the correct option in our
function defintion.

2


