Higher Order Functions

Haskell allows the arguments of functions to be other functions. We can also have a function
return another function as its value. Functions that manipulate other functions are called
higher order functions and we will see that this can be a very useful mechanism.

As an introduction to higher order functions, we will examine some examples of manip-
ulating words and sentences. Consider the example of getting the first letter of every word
in a sentence:

firstLetters :: Language -> Language
firstLetters s = if (empty s)
then s

else (firstItem (firstItem s)) +++ (firstLetters (butFirst s))

> firstLetters (sent "american civil liberties union")
[a c1 u]

As another example, suppose we wish to square all the number that are contained in a
sentence

squareSent :: Language -> Language
squareSent s = if (empty s)
then s

else (squareWord (firstItem s)) +++ (squareSent (butFirst s)) where
squareWord w = if (wordIsNum w)

then intToWord (square (wordToInt w))

else w

> squareSent (sent "1 2 3 and 4")
[1 4 9 and 16]

You should see a strong similarity in the solutions of these two examples. In both, we
applied a function (firstItem or squareWord) to every word in the sentence. This is a
very common pattern so we will apply an abstraction to capture this recurring pattern. We
can write a higher order function which does this, where the function applied to every word
in the sentence (of type Language -> Language) is passed in as a parameter. A slightly
fancier version of this function every is supplied in the Words module:

every :: (Language -> Language) -> Language -> Language
every f s = if (empty s)
then s

else (f (firstItem s)) +++ (every f (butFirst s))

> every firstItem (sent ("american civil liberties union")
[a c1ul



> every squareWord (sent "1 2 3 and 4")
[1 4 9 and 16]

Another common task that can be encapsulated into a higher order function is to select
only the words in a sentence that satisfy a given predicate. The predicate is a function that
returns true or false for a given word (Language -> Bool) and is the first parameter of
the function keep. A slightly fancier version of this function keep is supplied in the Words
module:

keep :: (Language -> Bool) -> Language -> Language
keep test s = if (empty s)
then s

else if test (firstItem s)
then (firstItem s) +++ (keep test (butFirst s))
else keep test (butFirst s)

> keep wordIsNum (sent ("4 calling birds 3 french hens 2 turtle doves")
[4 3 2]

> keep isVowel (word "piggies") where isVowel letter = member letter (word "aeiou")
iie

Yet another common task is to accumulate the words in a sentence using some sort of
combiner function. The combiner is a function that takes two words and combines them
into one so it signature is (Language -> Language -> Language) and is the first parameter
of the function accumulate. A slightly fancier version of this function keep is supplied in
the Words module:

accumulate :: (Language -> Language -> Language) -> Language -> Language
accumulate combine s = if (count s) == 1

then (firstItem s)

else combine (firstItem s) (accumulate combine (butFirst s))

> accumulate (+++) (sent ("a c 1 u")
aclu

> accumulate addNum (sent "1 2 3") where
addNum x y = intToWord (wordToInt x + wordToInt y)



