
Tail Recursion

We have seen examples of linear recursion but there is another type of recursion that feels
more like iteration (loops). Consider an alternate version of the factorial function:

factTail :: Int -> Int

factTail n = fTail n 1 where

fTail n result =

if n == 0

then result

else fTail (n-1) (result * n)

This type of recursion is called tail recursion and we had to define a helper function
fTail with two arguments within our function factTail. Let’s look at the computation of
factTail 4 with the substitution model

Expression Substitution explanation
factTail 4 substitute into the body of factTail
fTail 4 1 substitute for fTail (computes 4! * 1)
fTail 3 4 substitute for fTail (computes 3! * 4)
fTail 2 12 substitute for fTail (computes 2! * 12)
fTail 1 24 substitute for fTail (computes 1! * 24)
fTail 0 24 substitute for fTail (computes 0! * 24)
24

In tail recursion there is no winding and unwinding. Instead you see that this feels like
we are looping and remembering and changing values each time through the loop.

Let’s do a tail recursive version of revWord:

revWordTail :: Language -> Language

revWordTail w = revTail w (word "") where

revTail w result = if (empty w)

then result

else revTail (butFirst w) ((firstItem w) +++ result)

Use the substitution model to look at the computation revWordTail (word "cat").

Try writing tail recursive functions for the following:

-- compute the base value raised to the power of the exponent

powerTail :: Int -> Int -> Int

powerTail base exp = ...

-- compute the number of letters in a word

lengthTail :: Language -> Int

lengthTail w = ...

1


