Induction

Sometimes it can be difficult to convince yourself and others that a function generates the
correct results for all possible input. For example, consider the following function which
purports to compute the square of its arguments:

square :: Int -> Int
square n = if n==0
then O

else square (n - 1) + (2 * n - 1)

How would we show that this function correctly squares all nonnegative integers? It cor-
rectly squares 0. If we can assume that square(n—1) correctly gives us the result of (n—1)?2
then with a bit of algebra we can show that (n—1)2 +2n — 1 = n2. In other words, to show
that square n words we had to assume that square(n — 1) works. That feels like circular
reasoning, but we really aren’t cheating here. We assumed that square worked correctly on
a smaller value. To show that the smaller values works we could then assume that it works
on a value even smaller. This leads to a chain of reasoning which will eventually end when
we get to the case of square 0, which we already know works.

By contrast, we can show by algebra that n? = (n + 1)2 — (2n + 1). Even so, the fol-
lowing function does not work correctly:

square :: Int -> Int
square n = if n==0
then O

else square (n + 1) - (2 * n + 1)

Why doesn’t this new version of square work? It will end in infinite recursion since it com-
putes values further and further from the base case.

The reasoning we used to argue correctness of our working version of square is called math-
ematical induction. Such reasoning can be broken into three parts:

1. We require a base case of the proof to end the chain.

2. We assume that the function works for a smaller value. This is the induction hypothesis
and we need this to prove the if in the reasoning chain.

3. Finally the reasoning that leads from the inductive hypothesis to the conclusion is the
inductive step.

Here is the proof for the correctness of our square function:

1. The base case is when n is 0. square O returns the value of 0 which of course is 02,
so square O returns the correct result.

2. We assume that the square k returns the correct result for values less than n. In
other words, square k returns k2 whenever 0 < k < n.



3. Finally we need to show that square n also returns the correct result. We go back
to the definition that square n = square (n-1) + (2*n-1). Because n —1 < n, we
can use the previous step to argue that square (n-1) returns (n — 1)2. Therefore the
return value of square nis (n —1)2+ (2n—1) =n? —2n+1+2n— 1 = n2.

The three steps together gives us the proof that this version of square works correctly for
all nonnegative inputs. This type of proof is also useful when you are trying to debug a
program that does not work correctly. If we tried to prove our incorrect square function
using induction, we would run into trouble with the inductive step. Why? This should
point you toward the bug in the function.

Here is another version of the function square with a bug in it:

square :: Int -> Int
square n = if n==0
then 0O

else square (n - 2) + (4 * n - 4)

Try to prove it is correct with induction. Where does the proof run into trouble? Where is
the bug?



