
CS119 – Lab 5
Due Date: March 8

Purpose: Another way of creating an abstraction is having a function return another
function through partial application. This will allow your code to be more flexible and
reusable. We will see an example of that in this lab.

Knowledge: This lab will help you become familiar with the following content knowledge:

• How to use use partial application to create a function that returns another function

Task: Follow the steps in this lab carefully to complete the assignments. Copy the lab5
folder and complete the following assignments by writing functions in Lab5.hs.

Have you ever wondered how a sales representative knows when they have typed in an
incorrect credit card number or a scanner knows when it fails to read a UPC barcode
correctly? These are examples of self-verifying numbers. They are designed to have a
certain property that will fail if a simple error occurs, like changing a digit. A self-verifying
number with the rightmost digit d1, second digit d2, etc. will satisfy the following property
for a specific function f and divisor m:

f(1, d1) + f(2, d2) + f(3, d3) + ...is divisible by m (1)

We will write a function makeVerifier that takes as arguments f and m and returns a func-
tion that will perform a verification test for a given number. In other words makeVerifier is
a function factory that makes the verifying functions for us. Before we do this, let’s consider
a particular function that this factory is supposed to produce. Suppose we want to check
that the sum of the digits is divisible by 17. That is, f(i, di) = di and m is 17. The code in
Lab5.hs gives you the functions to get the last digit of a number (by using the remainder
of division by 10) and everything but the last digit (by using integer division). We can use
these to create a function sumOfDigits (also provided). Make sure you understand this
code and try it out.

Assignment 1:
Write a function divisibleSum :: Integer -> Integer -> Bool which takes a di-
visor m and a number num and determines whether the sum of the digits of num is
divisible by m.

Criteria for Success: Test your function with various m and num values and verify
that your function correctly determines whether sum of the digits of num is divisible
by m. For example, the sum of the digits of 123 is 6 so would be divisible by 3 but not
divisible by 4.

1



Consider defining:

divisibleSumBy17 = divisibleSum 17

We have used partial application to get a new function. The expression divisibleSumBy17 num

will now verify that the sum of the digits of num is divisible by 17. We can now generalize
this approach to achieve our function factory makeVerifier.

Assignment 2:
Write a function digitSum which takes a function f and a number num and computes
f(1, d1) + f(2, d2) + f(3, d3) + ... for all the digits in num.

Criteria for Success: One example of using this function is digitSum (*) 123 which
should compute 1*3 + 2*2 + 1*3 which is 10.

Assignment 3:
Put the pieces together to write the function

makeVerifier :: (Integer->Integer->Integer) -> Integer -> (Integer->Bool)

makeVerifier f m = ...

Criteria for Success: A simple example of a self verifying number is an ISBN number.
The ISBN numbers use the function f(i, di) = i ∗ di and a divisor of 11. We can use
our function factory to create a function which checks ISBN numbers:

checkISBN = makeVerifier (*) 11

For example, take the legal ISBN 0-201-53082-1 since 1*1 + 2*2 + 3*8 + 4*0 + 5*3 +
6*5 + 7*1 + 8*0 + 9*2 + 10*0 = 99 = 0 (mod 11)
You should now be able to verify this with checkISBN 0201530821

Change a digit and verify that it detects that you no longer have a legal ISBN.

2



Assignment 4:

UPC barcodes use a divisor of 10 and the function f(i, di) = di when i is odd and 3di
when i is even. Build a verifier checkUPC.

Criteria for Success: The UPC number consists of all the digits: the one to the
left of the bars, the ones underneath the bars, and one on the right. Check out your
function by using the valid UPC code above. Change a digit and verify that it detects
that the code is no longer valid.

Assignment 5:
Credit card numbers also have a divisor of 10 and use the function f(i, di) = di when
i is odd. But when i is even, the function returns and 2di when di < 5 and 2di + 1
otherwise. Build a verifier for checking credit card numbers.

Criteria for Success: Try out your function with the account number 79927398713.
Change a digit and verify that it detects that the code is no longer valid.

Submit your Lab5.hs file in Canvas for grading.

3


