
Activity 6

We can create our own data types by simply listing the possible values that the type may have.

Consider this example:

data Thing = Shoe | Ship | SealingWax | Cabbage | King

 deriving Show

This declares a new type called Thing with five possible values (Shoe, Ship, etc) which are the only values

of type Thing. The deriving Show is a magical incantation which tells Haskell to automatically generate

default code for printing values of type Thing.

We can write functions on type Thing by pattern matching:

isSmall:: Thing -> Bool
isSmall Shoe = True
isSmall Ship = False
isSmall SealingWax = True
isSmall Cabbage = True
isSmall King = False

Try
> isSmall Cabbage

In a function, the cases are tried in order from top to bottom, so we could also make the definition of

isSmall a bit shorter by using a default pattern _. You can read the _ as meaning “everything else”.

isSmall2 :: Thing -> Bool

isSmall2 Ship = False

isSmall2 King = False

isSmall2 _ = True

Try

>isSmall2 Cabbage

Data type values need not be a simple list like we saw above. The types may also include arguments.

Consider the following data type:

data FailableDouble = Failure | OK Double

 deriving Show

This says that the FailableDouble type has two values. The second case, OK, takes an argument of type

Double. So OK by itself is not a value of type FailableDouble; we need to give it a Double. For example,

OK 3.4 is a value of type FailableDouble

Here's one way we might use our new FailableDouble type:

safeDiv:: Double -> Double -> FailableDouble

safeDiv _ 0 = Failure

safeDiv x y = OK (x / y)

Try

> safeDiv 2 0

> safeDiv 3 4

Complete the function failureToZero which converts a FailableDouble to a regular double by changing

the Failure values to zero but leaving the OK values to be the double value that has been deemed OK.

failureToZero :: FailableDouble -> Double

failureToZero __________ = 0

failureToZero (OK d) = __________

You can test your function with:

>failureToZero (safeDiv 2 0)

>failureToZero (safeDiv 3 4)

